论文标题

最大熵产生是流体纳维尔 - 斯托克斯和欧拉方程的必要可接纳条件

Maximum entropy production as a necessary admissibility condition for the fluid Navier-Stokes and Euler equations

论文作者

Glimm, James, Lazarev, Daniel, Chen, Gui-Qiang

论文摘要

在粒子物理动力学中,我们假设均匀分布是物理度量和速度配置空间熵的理论定义。该分布在本文其余部分中标记为物理解决方案。动力学由拉格朗日公式的假设控制,速度时间衍生物是速度构型与速度构型的结合。从这些定义和假设中,我们从数学上表明,最大熵生产原理从Navier-Stokes和Euler方程的替代解决方案之间选择了物理度量,但此处未建立其对Eulerian框架的转换,这将是单独考虑的主题。

In a particle physics dynamics, we assume a uniform distribution as the physical measure and a measure-theoretic definition of entropy on the velocity configuration space. This distribution is labeled as the physical solution in the remainder of the article. The dynamics is governed by an assumption of a Lagrangian formulation, with the velocity time derivatives as the momenta conjugate to the velocity configurations. From these definitions and assumptions, we show mathematically that a maximum entropy production principle selects the physical measure from among alternate solutions of the Navier-Stokes and Euler equations, but its transformation to an Eulerian frame is not established here, a topic that will be considered separately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源