论文标题

o-plane耦合在订单$α'^2 $:一个R-R场强度

O-plane couplings at order $α'^2$: one R-R field strength

论文作者

Mashhadi, Mahboube, Garousi, Mohammad R.

论文摘要

众所周知,o $ _p $ - 平面的异常Chern-Simons(CS)耦合与T-偶数转换不一致。这种耦合与T偶尔性的兼容性需要包含涉及一个R-R场强的耦合。在本文中,我们以$α'^2 $的顺序找到了这样的耦合。 通过需要R-R和NS-NS仪表不向导,我们首先在$α'^2 $上找到所有独立的耦合。有$ 1,\,6,\,28,\,20,\,19,\,2 $耦合,对应于R-R Field Strengths $ f^{(p-4)} $,$ \,$ \,f^{(p-2)} $,$ \,$ \,f^{(p)(p)} $,$,$,$,$,$,f^,p^$ \ 2) $ \,f^{(p+4)} $和$ f^{(p+6)} $。然后,我们对这些耦合和CS耦合$ c^{(p-3)} \ wedge r \ wedge r $以$α'^2 $固定其相应系数。 T偶尔性约束以CS系数固定所有系数。它们与S-Matrix方法中文献中已经在文献中已经发现的部分耦合完全一致。

It is known that the anomalous Chern-Simons (CS) coupling of O$_p$-plane is not consistent with the T-duality transformations. Compatibility of this coupling with the T-duality requires the inclusion of couplings involving one R-R field strength. In this paper we find such couplings at order $α'^2$. By requiring the R-R and NS-NS gauge invariances, we first find all independent couplings at order $α'^2$. There are $1,\, 6,\,28,\,20,\, 19,\, 2$ couplings corresponding to the R-R field strengths $F^{(p-4)}$, $\,F^{(p-2)}$, $\,F^{(p)}$, $\,F^{(p+2)}$, $\,F^{(p+4)}$ and $F^{(p+6)}$, respectively. We then impose the T-duality constraint on these couplings and on the CS coupling $C^{(p-3)}\wedge R\wedge R$ at order $α'^2$ to fix their corresponding coefficients. The T-duality constraint fixes all coefficients in terms of the CS coefficient. They are fully consistent with the partial couplings that have been already found in the literature by the S-matrix method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源