论文标题

组成积分:狭窄和复杂的镜头

The Compositional Integral: The Narrow And The Complex Looking-Glass

论文作者

Nixon, James David

论文摘要

本文的目的是使复杂平面中组成积分的概念形式化。我们证明了保证其存在的融合定理。我们证明了凯奇(Cauchy)整体定理的类似物,并提出了一种恢复库奇(Cauchy)整体公式的方法。这样,我们得出了凯奇残留定理的修改形式。然后,我们开发了泰勒系列的组成类似物。在最终性中,我们描述了一个构图傅立叶变换。并说明了它的一些基本属性。

The goal of this paper is to formalize the notion of The Compositional Integral in The Complex Plane. We prove a convergence theorem guaranteeing its existence. We prove an analogue of Cauchy's Integral Theorem--and suggest an approach at recovering Cauchy's Integral Formula. With this we derive a modified form of Cauchy's Residue Theorem. Then, we develop a compositional analogue of Taylor Series. In finality, we describe a compositional Fourier Transform; and illustrate some basic properties of it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源