论文标题
真实和四离子框架中的频谱和分析功能演算
Spectrum and Analytic Functional Calculus in Real and Quaternionic Frameworks
论文作者
论文摘要
我们提出了一种遵循有关实际线性运算符的相应结果的QuaternionInic线性算子的频谱和分析功能计算的方法。实际上,可以使用riesz-dunford-gelfand-gelfand型核心以经典的方式对Quaternionic线性的构建进行分析函数演算,以获得类似的Quaternionic线性结构,并在复杂的平面中考虑光谱。还讨论了成对的运算符的Quaternionic关节光谱,并通过两个变量中的Martinelli型内核构建了分析功能演算。
We present an approach to the spectrum and analytic functional calculus for quaternionic linear operators, following the corresponding results concerning the real linear operators. In fact, the construction of the analytic functional calculus for real linear operators can be refined to get a similar construction for quaternionic linear ones, in a classical manner, using a Riesz-Dunford-Gelfand type kernel, and considering spectra in the complex plane. A quaternionic joint spectrum for pairs of operators is also discussed, and an analytic functional calculus is constructed, via a Martinelli type kernel in two variables.