论文标题
复杂双曲空间的异构体的可整合拉力
Integrable tautness of isometries of complex hyperbolic spaces
论文作者
论文摘要
考虑$ n \ geq 2 $。在本文中,我们证明了$ \ text {pu}(n,1)$是$ 1 $ -taut。该结果得出了对非压缩类型的排名谎言组的$ 1 $ tautness的研究。此外,Tailness属性意味着有限生成的组的分类为$ \ text {l}^1 $ - 量化等效于$ \ text {pu}(n,1)$的晶格。更确切地说,我们表明$ \ text {l}^1 $ - 量化等效组必须是有限组的$ \ text {pu}(n,1)$的晶格的扩展。
Consider $n \geq 2$. In this paper we prove that the group $\text{PU}(n,1)$ is $1$-taut. This result concludes the study of $1$-tautness of rank-one Lie groups of non-compact type. Additionally the tautness property implies a classification of finitely generated groups which are $\text{L}^1$-measure equivalent to lattices of $\text{PU}(n,1)$. More precisely, we show that $\text{L}^1$-measure equivalent groups must be extensions of lattices of $\text{PU}(n,1)$ by a finite group.