论文标题

降低神经科学的模型顺序

Model Order Reduction in Neuroscience

论文作者

Karasözen, Bülent

论文摘要

人的大脑包含大约$ 10^9 $的神经元,每个神经元与其他神经元大约有$ 10^3 $连接,突触。大脑的大多数感觉,认知和运动功能取决于大量神经元的相互作用。近年来,开发了许多技术用于顺序或同时记录大量神经元。计算能力和算法发展的增加已使对神经元种群的高级分析平行于与记录的神经元活性的数量和复杂性的快速增长。最近的研究利用了维度和模型订购降低技术来提取在单个神经元水平上显而易见的相干特征。已经观察到神经元活性在低维子空间上演变。模型降低大规模神经元网络的目的是对模式的准确预测及其在大脑不同区域的传播。大脑活性的时空特征在低维子空间上鉴定出具有动态模式分解(DMD),正确的正交分解(POD),离散经验插值(DEIM)和组合参数和状态减少的方法。在本文中,我们概述了当前使用的维度降低和模型阶降低神经科学中的技术。 这项工作将作为即将降低模型订单的手册的一章,(p。Benner,S。Grivet-Talocia,A。Tourneoni,G。Rozza,W。H。H. A. Schilders,L。M。Silveira,Eds,出现在De Gruyter上)

The human brain contains approximately $10^9$ neurons, each with approximately $10^3$ connections, synapses, with other neurons. Most sensory, cognitive and motor functions of our brains depend on the interaction of a large population of neurons. In recent years, many technologies are developed for recording large numbers of neurons either sequentially or simultaneously. An increase in computational power and algorithmic developments have enabled advanced analyses of neuronal population parallel to the rapid growth of quantity and complexity of the recorded neuronal activity. Recent studies made use of dimensionality and model order reduction techniques to extract coherent features which are not apparent at the level of individual neurons. It has been observed that the neuronal activity evolves on low-dimensional subspaces. The aim of model reduction of large-scale neuronal networks is an accurate and fast prediction of patterns and their propagation in different areas of the brain. Spatiotemporal features of the brain activity are identified on low dimensional subspaces with methods such as dynamic mode decomposition (DMD), proper orthogonal decomposition (POD), discrete empirical interpolation (DEIM) and combined parameter and state reduction. In this paper, we give an overview of the currently used dimensionality reduction and model order reduction techniques in neuroscience. This work will be featured as a chapter in the upcoming Handbook on Model Order Reduction,(P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. H. A. Schilders, L. M. Silveira, eds, to appear on DE GRUYTER)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源