论文标题
多目标变异自动编码器:智能基础架构维护的应用程序
Multi-Objective Variational Autoencoder: an Application for Smart Infrastructure Maintenance
论文作者
论文摘要
多路数据分析已成为在高阶数据集中捕获基础结构的必要工具,其中标准的双向分析技术通常无法发现多路数据中变量之间的隐藏相关性。我们提出了一种基于自动编码器深神经网络(ADNN)的重建概率的多路传感数据中智能基础设施损伤检测和诊断智能基础设施损伤检测和诊断的多目标变异自动编码器(MVA)方法。我们的方法将来自多个传感器的数据融合在一个ADNN中,该ADNN正在提取和用于损害识别的信息特征。它产生概率异常评分以检测损害,评估其严重程度并通过ADNN中引入的新定位层进一步将其定位。 我们在结构健康监测领域的多路数据集上评估了我们的方法,以造成损害诊断。数据是从我们部署的数据采集系统上收集的,该系统在悉尼西部的一座有线桥上,以及从洛斯阿拉莫斯国家实验室(LANL)获得的基于实验室的建筑结构。实验结果表明,所提出的方法可以准确检测结构损伤。它还能够估计损害严重程度的不同水平,并在无监督的方面捕获损害位置。与最先进的方法相比,我们提出的方法在损害检测和定位方面表现出更好的性能。
Multi-way data analysis has become an essential tool for capturing underlying structures in higher-order data sets where standard two-way analysis techniques often fail to discover the hidden correlations between variables in multi-way data. We propose a multi-objective variational autoencoder (MVA) method for smart infrastructure damage detection and diagnosis in multi-way sensing data based on the reconstruction probability of autoencoder deep neural network (ADNN). Our method fuses data from multiple sensors in one ADNN at which informative features are being extracted and utilized for damage identification. It generates probabilistic anomaly scores to detect damage, asses its severity and further localize it via a new localization layer introduced in the ADNN. We evaluated our method on multi-way datasets in the area of structural health monitoring for damage diagnosis purposes. The data was collected from our deployed data acquisition system on a cable-stayed bridge in Western Sydney and from a laboratory based building structure obtained from Los Alamos National Laboratory (LANL). Experimental results show that the proposed method can accurately detect structural damage. It was also able to estimate the different levels of damage severity, and capture damage locations in an unsupervised aspect. Compared to the state-of-the-art approaches, our proposed method shows better performance in terms of damage detection and localization.