论文标题
波导量子电动力学中的多维超级和亚缩放
Multidimensional super- and subradiance in waveguide quantum electrodynamics
论文作者
论文摘要
我们研究了多维量子网络的集体衰减速率,其中一维波指导形成了相交的高矩形晶格,量子位于晶格点。我们介绍并激励\ emph {dimention降低极点}(滴)猜想,该猜想通过与一维拓扑的波导连接(例如,Qubits的线性链)来识别此类网络的所有集体衰减速率。使用Drop,我们考虑多体效应,例如多维量子网络中连续体中的超级效果,子缩度和界限。我们发现,与一维线性链不同,多维量子网络具有不同的级别,我们称之为多维超高。此外,我们将线性链中次级缩放的$ n^{ - 3} $缩放到$ d $二维网络。
We study the collective decay rates of multi-dimensional quantum networks in which one-dimensional waveguides form an intersecting hyper-rectangular lattice, with qubits located at the lattice points. We introduce and motivate the \emph{dimensional reduction of poles} (DRoP) conjecture, which identifies all collective decay rates of such networks via a connection to waveguides with a one-dimensional topology (e.g. a linear chain of qubits). Using DRoP, we consider many-body effects such as superradiance, subradiance, and bound-states in continuum in multi-dimensional quantum networks. We find that, unlike one-dimensional linear chains, multi-dimensional quantum networks have superradiance in distinct levels, which we call multi-dimensional superradiance. Furthermore, we generalize the $N^{-3}$ scaling of subradiance in a linear chain to $d$-dimensional networks.