论文标题

Wasserstein分布在强劲的外观经济派遣上

Wasserstein Distributionally Robust Look-Ahead Economic Dispatch

论文作者

Poolla, Bala Kameshwar, Hota, Ashish R., Bolognani, Saverio, Callaway, Duncan S., Cherukuri, Ashish

论文摘要

我们考虑了不确定的可再生能源产生的经济调度(LAED)的问题。这个问题的目的是最大程度地降低受不确定的运营约束的传统能源产生的成本。违反这些限制的风险必须低于特定的特征,其特征与观察到的过去数据或预测相似。我们基于两个新型的数学重新印象,介绍了两种数据驱动的方法。第一个是一个可拖动的凸面程序,其中通过分布稳健的条件 - 价值危险来定义不确定的约束。第二个是一个可扩展的鲁棒优化程序,该程序产生了近似分布的稳健偶然性约束的LAED。具有实际太阳生产数据和预测的IEEE 39总线系统上的数值实验说明了这些方法的有效性。我们讨论系统操作员应如何调整这些技术,以寻求所需的稳健性 - 性能权衡,并比较其计算可扩展性。

We consider the problem of look-ahead economic dispatch (LAED) with uncertain renewable energy generation. The goal of this problem is to minimize the cost of conventional energy generation subject to uncertain operational constraints. The risk of violating these constraints must be below a given threshold for a family of probability distributions with characteristics similar to observed past data or predictions. We present two data-driven approaches based on two novel mathematical reformulations of this distributionally robust decision problem. The first one is a tractable convex program in which the uncertain constraints are defined via the distributionally robust conditional-value-at-risk. The second one is a scalable robust optimization program that yields an approximate distributionally robust chance-constrained LAED. Numerical experiments on the IEEE 39-bus system with real solar production data and forecasts illustrate the effectiveness of these approaches. We discuss how system operators should tune these techniques in order to seek the desired robustness-performance trade-off and we compare their computational scalability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源