论文标题

量子传感网络,用于估计线性函数

Quantum sensing networks for the estimation of linear functions

论文作者

Rubio, Jesús, Knott, Paul A, Proctor, Timothy J, Dunningham, Jacob A

论文摘要

在过去的几年中,已经在很大程度上开发了网络量子传感的理论框架,但仍然存在许多开放问题。其中,从根本和构建有效的传感网络中,具有重要意义的问题是传感器间相关性在同时估算多个线性函数中的作用,其中后者被置于集合的局部参数上,因此可以看作是全局属性。在这项工作中,我们为此提供了解决方案,当每个节点都是量子,网络的状态是传感器对称的。首先,我们得出一个一般表达式,将传感器间相关性和与功能相关的向量的几何形状联系起来,从而使渐近误差是最佳的。使用此情况,我们表明,如果向量聚集在两个特殊子空间周围,那么当相关强度接近其极端值时,最佳将达到最佳,而这些极端之间对于任何其他几何形状都存在单调过渡。此外,我们证明纠缠可能会估算非平凡的全球性质,而有时实际上是无关紧要的。最后,我们使用贝叶斯方法对这些结果进行了非反应分析,发现增强精度所需的相关量至关重要取决于测量数据的数量。我们的结果将作为研究如何利用在渐近状态内外运行的量子传感器网络中的相关性的基础。

The theoretical framework for networked quantum sensing has been developed to a great extent in the past few years, but there are still a number of open questions. Among these, a problem of great significance, both fundamentally and for constructing efficient sensing networks, is that of the role of inter-sensor correlations in the simultaneous estimation of multiple linear functions, where the latter are taken over a collection local parameters and can thus be seen as global properties. In this work we provide a solution to this when each node is a qubit and the state of the network is sensor-symmetric. First we derive a general expression linking the amount of inter-sensor correlations and the geometry of the vectors associated with the functions, such that the asymptotic error is optimal. Using this we show that if the vectors are clustered around two special subspaces, then the optimum is achieved when the correlation strength approaches its extreme values, while there is a monotonic transition between such extremes for any other geometry. Furthermore, we demonstrate that entanglement can be detrimental for estimating non-trivial global properties, and that sometimes it is in fact irrelevant. Finally, we perform a non-asymptotic analysis of these results using a Bayesian approach, finding that the amount of correlations needed to enhance the precision crucially depends on the number of measurement data. Our results will serve as a basis to investigate how to harness correlations in networks of quantum sensors operating both in and out of the asymptotic regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源