论文标题
单位容量图中最低成本流的最低成本流的循环控制
Circulation Control for Faster Minimum Cost Flow in Unit-Capacity Graphs
论文作者
论文摘要
我们提出了一个$ m^{4/3+o(1)} \ log W $ - 时间算法,用于求解具有单位容量的图形中的最小成本流问题,其中$ w $是任何边缘重量的最大绝对值。对于稀疏图,这在此问题上的最著名的运行时间上有所改善,并且通过众所周知的减少,也意味着在负重带有负重的最短路径问题的运行时间上,最低成本两分$ \ boldsymbol {\ mathit {b}} $ - 当$ \ | \ boldSymbol {\ boldsymbol {\ m目前最快的算法的时间,用于具有单位能力的图表(Liu-Sidford,2020)。 我们的算法依赖于开发基于内部方法的框架,该框架作用于底层图中的循环空间。从组合的角度来看,可以将该框架视为迭代地通过在循环周围推动流量来提高次优溶液的成本。这些循环是通过计算标准牛顿步骤的正规版本来得出的,牛顿步骤的正规版本受到以前关于单位容量最大流量问题的工作的启发(Liu-Sidford,2019年),并根据此问题的最新进展(Liu-Sidford,2020年)进行了完善。然后,可以使用$ \ ell_p $ - norm最小化流量的最新工作来有效地计算结果的步骤问题(Kyng-peng-sachdeva-wang,2019年)。我们通过将这个新的步骤与定制的预处理方法相结合来获得更快的算法,该方法旨在确保计算这些循环的图具有足够大的电导率。
We present an $m^{4/3+o(1)}\log W$-time algorithm for solving the minimum cost flow problem in graphs with unit capacity, where $W$ is the maximum absolute value of any edge weight. For sparse graphs, this improves over the best known running time for this problem and, by well-known reductions, also implies improved running times for the shortest path problem with negative weights, minimum cost bipartite $\boldsymbol{\mathit{b}}$-matching when $\|\boldsymbol{\mathit{b}}\|_1 = O(m)$, and recovers the running time of the currently fastest algorithm for maximum flow in graphs with unit capacities (Liu-Sidford, 2020). Our algorithm relies on developing an interior point method-based framework which acts on the space of circulations in the underlying graph. From the combinatorial point of view, this framework can be viewed as iteratively improving the cost of a suboptimal solution by pushing flow around circulations. These circulations are derived by computing a regularized version of the standard Newton step, which is partially inspired by previous work on the unit-capacity maximum flow problem (Liu-Sidford, 2019), and subsequently refined based on the very recent progress on this problem (Liu-Sidford, 2020). The resulting step problem can then be computed efficiently using the recent work on $\ell_p$-norm minimizing flows (Kyng-Peng-Sachdeva-Wang, 2019). We obtain our faster algorithm by combining this new step primitive with a customized preconditioning method, which aims to ensure that the graph on which these circulations are computed has sufficiently large conductance.