论文标题
在多体局部阶段中数量熵无限生长的证据
Evidence for unbounded growth of the number entropy in many-body localized phases
论文作者
论文摘要
我们调查了数量熵$ s_n $ ---表征子系统之间的粒子数波动 - - 在具有潜在障碍的一维相互作用的多体系统中进行淬火之后。我们发现有证据表明,在预计将显示多体定位(MBL)的政权中,纠缠熵的增长为$ s \ sim \ ln t $,随着时间$ t $的函数,数字熵的增长为$ s_n \ sim \ sim \ ln \ ln t $,表明以非常缓慢的速率以非常缓慢的速率运输连续粒子。我们证明,这种增长与最近针对非相互作用系统建立的纠缠与数字熵之间的关系一致。
We investigate the number entropy $S_N$---which characterizes particle-number fluctuations between subsystems---following a quench in one-dimensional interacting many-body systems with potential disorder. We find evidence that in the regime which is expected to show many-body localization (MBL) and where the entanglement entropy grows as $S\sim \ln t$ as function of time $t$, the number entropy grows as $S_N\sim\ln\ln t$, indicating continuing particle transport at a very slow rate. We demonstrate that this growth is consistent with a relation between entanglement and number entropy recently established for non-interacting systems.