论文标题

MQA:通过机器人操纵回答问题

MQA: Answering the Question via Robotic Manipulation

论文作者

Deng, Yuhong, Guo, Di, Guo, Xiaofeng, Zhang, Naifu, Liu, Huaping, Sun, Fuchun

论文摘要

在本文中,我们提出了一项新颖的任务,即操纵问题回答(MQA),该机器人在其中执行操纵措施来改变环境以回答给定的问题。为了解决此问题,提出了一个由QA模块和操纵模块组成的框架。对于质量检查模块,我们采用视觉问题回答(VQA)任务的方法。对于操纵模块,深Q网络(DQN)模型旨在为机器人生成操作动作以与环境相互作用。我们考虑机器人在垃圾箱内连续操纵物体的情况,直到找到问题的答案为止。此外,在模拟环境中建立了一个包含各种对象模型,场景和相应的问题解答对的新型数据集。已经进行了广泛的实验来验证所提出的框架的有效性。

In this paper, we propose a novel task, Manipulation Question Answering (MQA), where the robot performs manipulation actions to change the environment in order to answer a given question. To solve this problem, a framework consisting of a QA module and a manipulation module is proposed. For the QA module, we adopt the method for the Visual Question Answering (VQA) task. For the manipulation module, a Deep Q Network (DQN) model is designed to generate manipulation actions for the robot to interact with the environment. We consider the situation where the robot continuously manipulating objects inside a bin until the answer to the question is found. Besides, a novel dataset that contains a variety of object models, scenarios and corresponding question-answer pairs is established in a simulation environment. Extensive experiments have been conducted to validate the effectiveness of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源