论文标题

小马驹:心脏运动估算的快速在线自适应学习

FOAL: Fast Online Adaptive Learning for Cardiac Motion Estimation

论文作者

Yu, Hanchao, Sun, Shanhui, Yu, Haichao, Chen, Xiao, Shi, Honghui, Huang, Thomas, Chen, Terrence

论文摘要

心脏MRI视频的运动估计对于评估人心脏解剖和功能至关重要。最近的研究表明,基于深度学习的方法有希望的结果。然而,在临床部署中,由于培训和测试数据集之间的分布不匹配,他们通常在临床环境中遇到的分布不匹配。另一方面,可以说是不可能收集所有代表性数据集并在部署前训练通用跟踪器。在这种情况下,我们提出了一个新颖的快速在线自适应学习(FOAL)框架:由元学习者优化的基于在线梯度下降的优化器。元学习者使在线优化器能够执行快速且强大的适应性。我们通过对两个公共临床数据集进行了广泛的实验来评估我们的方法。结果表明,与离线训练的跟踪方法相比,准确性的表现出色。平均而言,小马驹每次视频仅需$ 0.4 $秒才能在线优化。

Motion estimation of cardiac MRI videos is crucial for the evaluation of human heart anatomy and function. Recent researches show promising results with deep learning-based methods. In clinical deployment, however, they suffer dramatic performance drops due to mismatched distributions between training and testing datasets, commonly encountered in the clinical environment. On the other hand, it is arguably impossible to collect all representative datasets and to train a universal tracker before deployment. In this context, we proposed a novel fast online adaptive learning (FOAL) framework: an online gradient descent based optimizer that is optimized by a meta-learner. The meta-learner enables the online optimizer to perform a fast and robust adaptation. We evaluated our method through extensive experiments on two public clinical datasets. The results showed the superior performance of FOAL in accuracy compared to the offline-trained tracking method. On average, the FOAL took only $0.4$ second per video for online optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源