论文标题

Barotropic Navier-Stokes系统的统计解决方案

Statistical solutions to the barotropic Navier-Stokes system

论文作者

Fanelli, Francesco, Feireisl, Eduard

论文摘要

我们在弱解决方案的框架中引入了一个新的统计解决方案概念,该框架的弱解决方案 - 具有不均匀边界条件的Stokes System。统计解决方案是Markov运算符的一组概率度量的统计解决方案$ \ {M_T \} _ {t \ geq 0} $,$ \ mathfrak {p} [\ Mathcal {d}] $ in Data Space $ \ \ \ \ \ m natercal {d} $包含初始数据$ nourcation $ [\ varr] $ and [\ varr varr] $ and \ varrhho__0,数据$ \ mathbf {d} _b $。 (1)$ \ {m_t \} _ {t \ geq 0} $具有A.A. semigroup属性,$ m_ {t + s}(ν)= m_t \ circ m_s(ν)$ for noth $ t \ geq 0 $,a.a. $ s \ geq 0 $,以及\ mathfrak {p} [\ mathcal {d}] $中的任何$ν\。 (2)$ \ {m_t \} _ {t \ geq 0} $在限于确定性数据时是确定性的,特别是$ m_t(δ_ {[\ varrho_0,\ varrho_0,\ mathbf {m mathbf {m} \ Mathbf {M}(T,\ CDOT),\ Mathbf {d} _b]},$其中$ [\ varrho,\ Mathbf {M}] $是Navier-Stokes - Stokes系统的有限能量解决方案,该解决方案与数据$ [\ varrho_0,\ varrho_0,\ varhho_0,\ mathbff {\ navarho_0 \ Mathbf {d} _b] \ in \ Mathcal {d} $。 (3)$ m_t:\ Mathfrak {p} [\ Mathcal {d}] \ to \ Mathfrak {p} [\ Mathcal {d}] $在合适的Bregman-WassErstein Metric中是连续的,该指标是按数据支持的,可以通过数据为常规解决方案提供的措施。

We introduce a new concept of statistical solution in the framework of weak solutions to the barotropic Navier--Stokes system with inhomogeneous boundary conditions. Statistical solution is a family $\{ M_t \}_{t \geq 0}$ of Markov operators on the set of probability measures $\mathfrak{P}[\mathcal{D}]$ on the data space $\mathcal{D}$ containing the initial data $[\varrho_0, \mathbf{m}_0]$ and the boundary data $\mathbf{d}_B$. (1) $\{ M_t \}_{t \geq 0}$ possesses a.a. semigroup property, $ M_{t + s}(ν) = M_t \circ M_s(ν)$ for any $t \geq 0$, a.a. $s \geq 0$, and any $ν\in \mathfrak{P}[\mathcal{D}]$. (2) $\{ M_t \}_{t \geq 0}$ is deterministic when restricted to deterministic data, specifically $ M_t(δ_{[\varrho_0, \mathbf{m}_0, \mathbf{d}_B]}) = δ_{[\varrho(t, \cdot), \mathbf{m}(t, \cdot), \mathbf{d}_B]}, $ where $[\varrho, \mathbf{m}]$ is a finite energy weak solution of the Navier--Stokes system corresponding to the data $[\varrho_0, \mathbf{m}_0, \mathbf{d}_B] \in \mathcal{D}$. (3) $M_t: \mathfrak{P}[\mathcal{D}] \to \mathfrak{P}[\mathcal{D}]$ is continuous in a suitable Bregman--Wasserstein metric at measures supported by the data giving rise to regular solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源