论文标题

分布式的suppodular最大化,并行执行

Distributed Submodular Maximization with Parallel Execution

论文作者

Sun, Haoyuan, Grimsman, David, Marden, Jason R

论文摘要

子模型最大化问题广泛适用于目标降低回报的许多工程问题。虽然已知该问题对于某些目标函数的某些子类是NP的,但有一种贪婪的算法可以保证近似至少1/2的最佳解决方案。该贪婪算法可以用一组代理来实现,每种代理都会根据所有先前代理的选择顺序做出决策。在本文中,我们考虑了贪婪算法的概括,在该算法中,代理可以并行做出决策,而不是严格按顺序做出决策。特别是,我们对分区代理感兴趣,在该代理中,分区中的一组代理都基于先前代理的选择同时做出决定,以便算法在有限的迭代中终止。我们提供了该贪婪算法的这种并行版本的性能的界限,并表明将代理在分区中的集合之间均匀地划分会产生最佳结构。我们还表明,当目标函数表现出某种单调特性时,这种最佳结构仍然几乎是最佳的。最后,我们表明,即使代理只能观察先前代理的一部分决定,也可以在平行的贪婪算法中实现相同的性能保证。

The submodular maximization problem is widely applicable in many engineering problems where objectives exhibit diminishing returns. While this problem is known to be NP-hard for certain subclasses of objective functions, there is a greedy algorithm which guarantees approximation at least 1/2 of the optimal solution. This greedy algorithm can be implemented with a set of agents, each making a decision sequentially based on the choices of all prior agents. In this paper, we consider a generalization of the greedy algorithm in which agents can make decisions in parallel, rather than strictly in sequence. In particular, we are interested in partitioning the agents, where a set of agents in the partition all make a decision simultaneously based on the choices of prior agents, so that the algorithm terminates in limited iterations. We provide bounds on the performance of this parallelized version of the greedy algorithm and show that dividing the agents evenly among the sets in the partition yields an optimal structure. We additionally show that this optimal structure is still near-optimal when the objective function exhibits a certain monotone property. Lastly, we show that the same performance guarantees can be achieved in the parallelized greedy algorithm even when agents can only observe the decisions of a subset of prior agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源