论文标题

交通拥堵的路线和重新平衡在各种流量中的自动迁移系统

Congestion-aware Routing and Rebalancing of Autonomous Mobility-on-Demand Systems in Mixed Traffic

论文作者

Wollenstein-Betech, Salomón, Houshmand, Arian, Salazar, Mauro, Pavone, Marco, Cassandras, Christos G., Paschalidis, Ioannis Ch.

论文摘要

本文研究了自动驾驶在需求(AMOD)系统中的拥堵路线规划政策,从而在混合交通条件下提供了各种自动驾驶汽车的机队提供按需移动性。具体来说,我们首先设计了一个网络流模型,以通过考虑AMOD流对旅行时间的内源性影响来优化拥堵感的AMOD路由和重新平衡策略。其次,我们通过利用迭代方法来捕获由以用户为中心的方式自私地适应AMOD流动的私家车组成的反应性外源交通。最后,考虑到马萨诸塞州东部和纽约市的运输子网络,我们展示了我们框架的有效性。我们的结果表明,对于高度需求,纯AMOD旅行可能是由于其重新平衡流量所带来的额外流量而有害,而AMOD与步行或微型摩擦性选项的组合可以显着改善整体系统性能。

This paper studies congestion-aware route-planning policies for Autonomous Mobility-on-Demand (AMoD) systems, whereby a fleet of autonomous vehicles provides on-demand mobility under mixed traffic conditions. Specifically, we first devise a network flow model to optimize the AMoD routing and rebalancing strategies in a congestion-aware fashion by accounting for the endogenous impact of AMoD flows on travel time. Second, we capture reactive exogenous traffic consisting of private vehicles selfishly adapting to the AMoD flows in a user-centric fashion by leveraging an iterative approach. Finally, we showcase the effectiveness of our framework with two case-studies considering the transportation sub-networks in Eastern Massachusetts and New York City. Our results suggest that for high levels of demand, pure AMoD travel can be detrimental due to the additional traffic stemming from its rebalancing flows, while the combination of AMoD with walking or micromobility options can significantly improve the overall system performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源