论文标题
建模为复杂值固定过程的时间不相关的组件
Modeling temporally uncorrelated components for complex-valued stationary processes
论文作者
论文摘要
我们在离散的弱固定过程中考虑了复杂值的线性混合模型。我们恢复感兴趣的潜在组成部分,这些组件发生了线性混合。我们研究了经典的Unmixing估计量的渐近性能,该特性基于协方差矩阵的对角和带有滞后$τ$的自动variance矩阵。我们的主要贡献是,我们的渐近结果可以应用于大型过程。在相关文献中,通常认为这些过程具有较弱的相关性。我们扩展了此类,并考虑在更强的依赖性结构下的Unmixing估计器。特别是,我们分析了在长期和短期依赖的复合物值过程中,分析未混合估计量的渐近行为。因此,我们的理论涵盖了比通常的$ \ sqrt {t} $和产生非高斯渐近分布的Unmixing估计器的均匀估计器。提出的方法是一种强大的预科工具,高度适用于统计的多个领域。在例如生物医学应用和信号处理中,经常遇到复杂值的过程。此外,我们的方法可以应用于模拟涉及时间不相关的对的实用值的问题。这些是在财务中遇到的。
We consider a complex-valued linear mixture model, under discrete weakly stationary processes. We recover latent components of interest, which have undergone a linear mixing. We study asymptotic properties of a classical unmixing estimator, that is based on simultaneous diagonalization of the covariance matrix and an autocovariance matrix with lag $τ$. Our main contribution is that our asymptotic results can be applied to a large class of processes. In related literature, the processes are typically assumed to have weak correlations. We extend this class and consider the unmixing estimator under stronger dependency structures. In particular, we analyze the asymptotic behavior of the unmixing estimator under both, long- and short-range dependent complex-valued processes. Consequently, our theory covers unmixing estimators that converge slower than the usual $\sqrt{T}$ and unmixing estimators that produce non-Gaussian asymptotic distributions. The presented methodology is a powerful prepossessing tool and highly applicable in several fields of statistics. Complex-valued processes are frequently encountered in, for example, biomedical applications and signal processing. In addition, our approach can be applied to model real-valued problems that involve temporally uncorrelated pairs. These are encountered in, for example, applications in finance.