论文标题
基于优化的视觉惯性探针仪中全球位置测量的紧密耦合融合
Tightly-coupled Fusion of Global Positional Measurements in Optimization-based Visual-Inertial Odometry
论文作者
论文摘要
在长期自主导航中实现稳健,无漂移的姿势估计的目标的动机,在这项工作中,我们提出了一种方法,将全球位置信息与视觉和惯性测量融合在一起,以紧密耦合的非线性 - 基于基于基于的估计器。与以前的作品不同的作品不同的是,使用紧密耦合的方法可以利用所有测量值之间的相关性。通过最小化包括视觉重新投影错误,相对惯性错误和全局位置残差的成本函数来估算最新系统状态的滑动窗口。我们使用IMU前整合来制定惯性残差,并利用这种算法的结果有效地计算全球位置残差。实验结果表明,所提出的方法实现了准确且在全球一致的估计,而优化计算成本可以忽略不计。我们的方法始终优于松散耦合的融合方法。相对于户外无人机(UAV)飞行中的松散耦合方法,平均位置误差最多可减少50%,其中全球位置信息由嘈杂的GPS测量提供。据我们所知,这是第一部全球位置测量值紧密融合到基于优化的视觉惯性探测算法中的工作,利用IMU前整合方法来定义全球位置因素。
Motivated by the goal of achieving robust, drift-free pose estimation in long-term autonomous navigation, in this work we propose a methodology to fuse global positional information with visual and inertial measurements in a tightly-coupled nonlinear-optimization-based estimator. Differently from previous works, which are loosely-coupled, the use of a tightly-coupled approach allows exploiting the correlations amongst all the measurements. A sliding window of the most recent system states is estimated by minimizing a cost function that includes visual re-projection errors, relative inertial errors, and global positional residuals. We use IMU preintegration to formulate the inertial residuals and leverage the outcome of such algorithm to efficiently compute the global position residuals. The experimental results show that the proposed method achieves accurate and globally consistent estimates, with negligible increase of the optimization computational cost. Our method consistently outperforms the loosely-coupled fusion approach. The mean position error is reduced up to 50% with respect to the loosely-coupled approach in outdoor Unmanned Aerial Vehicle (UAV) flights, where the global position information is given by noisy GPS measurements. To the best of our knowledge, this is the first work where global positional measurements are tightly fused in an optimization-based visual-inertial odometry algorithm, leveraging the IMU preintegration method to define the global positional factors.