论文标题

功能重复使用的效用:数据饥饿制度中的转移学习

The Utility of Feature Reuse: Transfer Learning in Data-Starved Regimes

论文作者

Shadman, Rashik, Murshed, M. G. Sarwar, Verenich, Edward, Velasquez, Alvaro, Hussain, Faraz

论文摘要

通过深层神经网络将转移学习的使用已越来越广泛地扩展到将经过良好测试的计算机视觉系统部署到较新的域,尤其是数据集有限的域。我们描述了具有数据饥饿制度的域的转移学习用例,其标记为目标样本不到100个。我们评估了卷积特征提取和过度参数化模型对目标训练数据的大小的有效性,以及它们在协方差偏移或分布(OOD)数据的数据上的概括性能。我们的实验表明,过度参数化和功能再利用都有助于在培训图像分类器中成功应用转移学习在数据饥饿方案中。我们提供视觉解释以支持我们的发现,并得出结论,转移学习可以增强数据饥饿制度中CNN体系结构的性能。

The use of transfer learning with deep neural networks has increasingly become widespread for deploying well-tested computer vision systems to newer domains, especially those with limited datasets. We describe a transfer learning use case for a domain with a data-starved regime, having fewer than 100 labeled target samples. We evaluate the effectiveness of convolutional feature extraction and fine-tuning of overparameterized models with respect to the size of target training data, as well as their generalization performance on data with covariate shift, or out-of-distribution (OOD) data. Our experiments demonstrate that both overparameterization and feature reuse contribute to the successful application of transfer learning in training image classifiers in data-starved regimes. We provide visual explanations to support our findings and conclude that transfer learning enhances the performance of CNN architectures in data-starved regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源