论文标题
搜索中央差异卷积网络以进行反欺骗
Searching Central Difference Convolutional Networks for Face Anti-Spoofing
论文作者
论文摘要
面部抗散热(FAS)在面部识别系统中起着至关重要的作用。大多数最先进的FAS方法1)依靠堆叠的卷积和专家设计的网络,在描述详细的细粒度信息方面很弱,并且在环境变化(例如不同的照明)变化时很容易无效,并且2)更喜欢使用长序列作为输入来提取动态功能,从而使它们很难在需要快速响应的方案中解散,从而使其难以进行快速响应。在这里,我们提出了一种基于中央差卷积(CDC)的新型框架水平FAS方法,该方法能够通过汇总强度和梯度信息来捕获固有的详细模式。由CDC构建的网络,称为中央差异卷积网络(CDCN),能够提供比用香草卷积构建的对应物更强大的建模能力。此外,在专门设计的CDC搜索空间上,神经体系结构搜索(NAS)可用于发现更强大的网络结构(CDCN ++),可以与多尺度注意力融合模块(MAFM)组装,以进一步提高性能。在六个基准数据集上进行了全面的实验,以表明1)提出的方法不仅在dataset测试(尤其是Oulu-NPU数据集的协议1中的0.2%ACER)上取得了卓越的性能,2)它还在交叉数据测试(尤其是Caseia-Mfsd dodlesset dodepatsetsetsetssets)上也可以很好地推广到交叉数据测试。这些代码可在\ href {https://github.com/zitongyu/cdcn} {https://github.com/zitongyu/cdcn}中获得。
Face anti-spoofing (FAS) plays a vital role in face recognition systems. Most state-of-the-art FAS methods 1) rely on stacked convolutions and expert-designed network, which is weak in describing detailed fine-grained information and easily being ineffective when the environment varies (e.g., different illumination), and 2) prefer to use long sequence as input to extract dynamic features, making them difficult to deploy into scenarios which need quick response. Here we propose a novel frame level FAS method based on Central Difference Convolution (CDC), which is able to capture intrinsic detailed patterns via aggregating both intensity and gradient information. A network built with CDC, called the Central Difference Convolutional Network (CDCN), is able to provide more robust modeling capacity than its counterpart built with vanilla convolution. Furthermore, over a specifically designed CDC search space, Neural Architecture Search (NAS) is utilized to discover a more powerful network structure (CDCN++), which can be assembled with Multiscale Attention Fusion Module (MAFM) for further boosting performance. Comprehensive experiments are performed on six benchmark datasets to show that 1) the proposed method not only achieves superior performance on intra-dataset testing (especially 0.2% ACER in Protocol-1 of OULU-NPU dataset), 2) it also generalizes well on cross-dataset testing (particularly 6.5% HTER from CASIA-MFSD to Replay-Attack datasets). The codes are available at \href{https://github.com/ZitongYu/CDCN}{https://github.com/ZitongYu/CDCN}.