论文标题
在$ \ mathbb {z} _p $ extensions $ \ mathbb {q} $上
On Asymptotic Fermat over $\mathbb{Z}_p$ extensions of $\mathbb{Q}$
论文作者
论文摘要
令$ p \ ge 5 $为prime,让$ \ mathbb {q} _ {n,p} $表示$ \ mathbb {z} _p $ -Extension的$ n $ the layer的$ n $ -th层,我们表明$ \ mathbb {q} _ {n,p} $没有非凡的单位。我们用它来证明所有$ n \ ge 1 $的有效的渐近fermat的最后一个定理,超过$ \ mathbb {q} _ {n,p} $,以及所有primes $ p \ ge 5 $,这些$ p \ ge 5 $是非wieferich的,即$ 2^{p-1} {p-1} {p-1} \ equiv equiv equiv 1 \ equiv 1 \ equiv 1 \ pmod pmod pmod pmod {p^2}我们的结果的有效性建立在索恩的最新工作基础上,证明了椭圆曲线的模块化$ \ mathbb {q} _ {n,p} $。
Let $p \ge 5$ be a prime and let $\mathbb{Q}_{n,p}$ denote the $n$-th layer of the cyclotomic $\mathbb{Z}_p$-extension of $\mathbb{Q}$. We show that $\mathbb{Q}_{n,p}$ has no exceptional units. We use this to prove the effective asymptotic Fermat's Last Theorem over $\mathbb{Q}_{n,p}$ for all $n \ge 1$ and all primes $p \ge 5$ that are non-Wieferich, i.e. $2^{p-1} \not \equiv 1 \pmod{p^2}$. The effectivity in our result builds on recent work of Thorne proving modularity of elliptic curves over $\mathbb{Q}_{n,p}$.