论文标题

通过湍流剪切层对声波的光谱拓宽的多尺度分析

Multiscale analysis of spectral broadening of acoustic waves by a turbulent shear layer

论文作者

Garnier, Josselin, Gay, Etienne, Savin, Éric

论文摘要

我们考虑由平面湍流剪切层上方发出的声波散射。该层是通过移动的随机介质进行建模的,其平均速度的空间和时间波动较小,声音的恒定密度和速度。我们为层传输的声压场开发了多尺度的扰动分析,并在已知速度波动的相关功能时得出其功率频谱密度。我们的目的是将提出的分析模型与开放风隧道中的喷气流量获得的一些实验结果进行比较。我们从理想流体流的Euler方程开始,并在环境,不稳定的不均匀流中进行线性性化。我们研究了传输压力场,而没有环境流速度的波动,以获得具有恒定特征的不受干扰的培养基的绿色功能。然后,我们使用lippmann-Schwinger方程来得出传输压力场的分析表达,这是层内速度波动的函数。随后计算出其功率频谱密度,以调用固定相参数,并假设源是时谐波,并且层很薄。我们最终研究了源音调频率和环境流速度对传输压力场功率频谱密度的影响,并将我们的结果与其他分析模型和实验数据进行了比较。

We consider the scattering of acoustic waves emitted by an active source above a plane turbulent shear layer. The layer is modeled by a moving random medium with small spatial and temporal fluctuations of its mean velocity, and constant density and speed of sound. We develop a multi-scale perturbative analysis for the acoustic pressure field transmitted by the layer and derive its power spectral density when the correlation function of the velocity fluctuations is known. Our aim is to compare the proposed analytical model with some experimental results obtained for jet flows in open wind tunnels. We start with the Euler equations for an ideal fluid flow and linearize them about an ambient, unsteady inhomogeneous flow. We study the transmitted pressure field without fluctuations of the ambient flow velocity to obtain the Green's function of the unperturbed medium with constant characteristics. Then we use a Lippmann-Schwinger equation to derive an analytical expression of the transmitted pressure field, as a function of the velocity fluctuations within the layer. Its power spectral density is subsequently computed invoking a stationary-phase argument, assuming in addition that the source is time-harmonic and the layer is thin. We finally study the influence of the source tone frequency and ambient flow velocity on the power spectral density of the transmitted pressure field and compare our results with other analytical models and experimental data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源