论文标题

广告的聚宝盆$ _5 $ vacua

A Cornucopia of AdS$_5$ Vacua

论文作者

Bobev, Nikolay, Fischbacher, Thomas, Gautason, Fridrik Freyr, Pilch, Krzysztof

论文摘要

我们在五维$ \ Mathcal {n} = 8 $ so(6)测量的超级重力中的临界点对应于ADS $ _5 $ vacua的系统搜索。通过采用Google的Tensorflow机器学习库,我们发现总共32个关键点,包括5个以前的知名点。所有27个新的关键点都是非对称的。我们为所有点计算标量波动的质谱,发现非superymmetric Ads $ _5 $ vacua在扰动上不稳定。 Many of the new critical points can be found analytically within consistent truncations of the $\mathcal{N}=8$ supergravity with respect to discrete subgroups of the S(O(6)$\times$ GL(2,$\mathbb{R}$)) symmetry of the potential.特别是,我们详细讨论了一个$ \ mathbb {z} _2^3 $ -invariant截断,带有10个标量字段和15个关键点。我们还明确计算了$ \ Mathbb {Z} _2^2 $ -INVARIANT扩展到18个标量字段,并从数值搜索中复制32个关键点中的17个。最后,我们表明,可以使用所谓的可解决参数化对42个标量字段的全部电势进行分析研究。特别是,我们发现所有关键点都位于$ \ mathbb {z} _2 $ -Invariant子空间中,由22个标量字段跨越。

We report on a systematic search for AdS$_5$ vacua corresponding to critical points of the potential in the five-dimensional $\mathcal{N}=8$ SO(6) gauged supergravity. By employing Google's TensorFlow Machine Learning library, we find the total of 32 critical points including 5 previously known ones. All 27 new critical points are non-supersymmetric. We compute the mass spectra of scalar fluctuatons for all points and find that the non-supersymmetric AdS$_5$ vacua are perturbatively unstable. Many of the new critical points can be found analytically within consistent truncations of the $\mathcal{N}=8$ supergravity with respect to discrete subgroups of the S(O(6)$\times$ GL(2,$\mathbb{R}$)) symmetry of the potential. In particular, we discuss in detail a $\mathbb{Z}_2^3$-invariant truncation with 10 scalar fields and 15 critical points. We also compute explicitly the scalar potential in a $\mathbb{Z}_2^2$-invariant extension of that truncation to 18 scalar fields and reproduce 17 of the 32 critical points from the numerical search. Finally, we show that the full potential as a function of 42 scalar fields can be studied analytically using the so-called solvable parametrization. In particular, we find that all critical points lie in a $\mathbb{Z}_2$-invariant subspace spanned by 22 scalar fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源