论文标题
三角剖分和四边形的最小维纳指数
Minimum Wiener Index of Triangulations and Quadrangulations
论文作者
论文摘要
连接图的Wiener索引是所有未排序的顶点对之间的距离之和。我们为简单三角剖分和四个连通性的最低维也纳指数提供至少$ c $的公式,并提供实现这些值的极端结构。我们的主要工具是在高度连接的三角形和四角形中设置上限。
The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices. We provide formulae for the minimum Wiener index of simple triangulations and quadrangulations with connectivity at least $c$, and provide the extremal structures, which attain those values. Our main tool is setting upper bounds for the maximum degree in highly connected triangulations and quadrangulations.