论文标题

通过以数据为中心的统计方法增强工业X射线断层扫描

Enhancing Industrial X-ray Tomography by Data-Centric Statistical Methods

论文作者

Suuronen, Jarkko, Emzir, Muhammad, Lasanen, Sari, Särkkä, Simo, Roininen, Lassi

论文摘要

X射线断层扫描在各个工业领域都有应用,例如锯木厂行业,石油和天然气行业,化学工程和岩土工程。在本文中,我们研究了X射线断层扫描重建的贝叶斯方法。在贝叶斯方法中,通过统计先验分布来解决层析成像重建的反问题,该分布通过分配概率来编码对象的平滑度和边缘分布来编码可能的内部结构。我们将有利于平滑度的高斯随机野外先验与非高斯总变化,BESOV和CAUCHY先验进行了比较,这些阶段和库奇先验促进了物体中尖锐的边缘,高对比度和低对比度区域。我们还提出了用于解决100,000-1,000,000个未知数的高维贝叶斯逆问题的计算方案。特别是,我们研究了Hamiltonian Monte Carlo方法的No-U-Turn变体的适用性,以及为此目的的更古典的自适应Metropolis-Gibbs算法的适用性。这些方法还可以对重建进行完全不确定性量化。对于更快的计算,我们使用有限的内存BFG优化算法的最大后验估计值。作为第一个工业应用,我们考虑锯木厂行业X射线日志断层扫描。原木有结,腐烂的零件,甚至可能是金属碎片,使其成为非高斯先生的好例子。其次,我们研究了钻孔岩石样品层析成像,这是石油和天然气行业的一个例子。我们表明,与其他选择相比,Cauchy先验会产生少量的人工制品,尤其是在稀疏的高噪声测量中,并且选择汉密尔顿蒙特卡洛可以实现系统的不确定性定量。

X-ray tomography has applications in various industrial fields such as sawmill industry, oil and gas industry, chemical engineering, and geotechnical engineering. In this article, we study Bayesian methods for the X-ray tomography reconstruction. In Bayesian methods, the inverse problem of tomographic reconstruction is solved with help of a statistical prior distribution which encodes the possible internal structures by assigning probabilities for smoothness and edge distribution of the object. We compare Gaussian random field priors, that favour smoothness, to non-Gaussian total variation, Besov, and Cauchy priors which promote sharp edges and high-contrast and low-contrast areas in the object. We also present computational schemes for solving the resulting high-dimensional Bayesian inverse problem with 100,000-1,000,000 unknowns. In particular, we study the applicability of a no-U-turn variant of Hamiltonian Monte Carlo methods and of a more classical adaptive Metropolis-within-Gibbs algorithm for this purpose. These methods also enable full uncertainty quantification of the reconstructions. For faster computations, we use maximum a posteriori estimates with limited-memory BFGS optimisation algorithm. As the first industrial application, we consider sawmill industry X-ray log tomography. The logs have knots, rotten parts, and even possibly metallic pieces, making them good examples for non-Gaussian priors. Secondly, we study drill-core rock sample tomography, an example from oil and gas industry. We show that Cauchy priors produce smaller number of artefacts than other choices, especially with sparse high-noise measurements, and choosing Hamiltonian Monte Carlo enables systematic uncertainty quantification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源