论文标题

MR图像重建

1D Probabilistic Undersampling Pattern Optimization for MR Image Reconstruction

论文作者

Xue, Shengke, Bai, Ruiliang, Jin, Xinyu

论文摘要

在3D临床场景中,磁共振成像(MRI)主要受到长时间扫描时间的限制,并且容易受到人体组织运动伪像的影响。因此,K空间不足采样用于加速MRI的获取,同时导致视觉上的MR图像差。最近,一些研究1)使用有效的采样模式,或2)设计深神经网络以提高所得图像的质量。但是,它们被认为是两种独立的优化策略。在本文中,我们在有限的采样率下,以回顾性数据驱动的方式提出了一个用于MR图像重建的跨域网络。我们的方法可以通过使用端到端的学习策略同时获得最佳的底采样模式(以K空间为单位)和重建模型,这些模型是根据培训数据进行定制的。我们提出了一个1D概率的底面采样层,以以可不同的方式获得最佳的不足采样模式及其概率分布。我们提出了一个1D逆傅里叶变换层,该层连接傅立叶结构域和前向通行期间的图像域和反向传播。此外,通过训练3D完全采样的K空间数据和传统欧几里得损失的MR图像,我们发现了最佳底漆模式的概率分布与其相应的采样率之间的普遍关系。实验表明,通过我们的1D概率下采样模式,恢复的MR图像的定量和定性结果显然优于几种现有采样策略的效果。

Magnetic resonance imaging (MRI) is mainly limited by long scanning time and vulnerable to human tissue motion artifacts, in 3D clinical scenarios. Thus, k-space undersampling is used to accelerate the acquisition of MRI while leading to visually poor MR images. Recently, some studies 1) use effective undersampling patterns, or 2) design deep neural networks to improve the quality of resulting images. However, they are considered as two separate optimization strategies. In this paper, we propose a cross-domain network for MR image reconstruction, in a retrospective data-driven manner, under limited sampling rates. Our method can simultaneously obtain the optimal undersampling pattern (in k-space) and the reconstruction model, which are customized to the type of training data, by using an end-to-end learning strategy. We propose a 1D probabilistic undersampling layer, to obtain the optimal undersampling pattern and its probability distribution in a differentiable way. We propose a 1D inverse Fourier transform layer, which connects the Fourier domain and the image domain during the forward pass and the backpropagation. In addition, by training 3D fully-sampled k-space data and MR images with the traditional Euclidean loss, we discover the universal relationship between the probability distribution of the optimal undersampling pattern and its corresponding sampling rate. Experiments show that the quantitative and qualitative results of recovered MR images by our 1D probabilistic undersampling pattern obviously outperform those of several existing sampling strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源