论文标题

通过域自适应语义分割的不确定性估计来纠正伪标签学习

Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation

论文作者

Zheng, Zhedong, Yang, Yi

论文摘要

本文着重于在语义分割的背景下将知识从源域转移到目标域的无监督域的适应性。现有方法通常将伪标签视为完全利用未标记的目标域数据的基础真理。然而,目标域数据的伪标签通常由在源域上训练的模型预测。因此,由于训练域和测试域之间的差异,生成的标签不可避免地包含不正确的预测,这些预测可以转移到最终改编的模型中,并在很大程度上损害了训练过程。为了克服问题,本文建议明确估计培训期间的预测不确定性,以纠正伪标签学习,以进行无监督的语义分割适应。给定输入图像,模型输出语义分割预测以及预测的不确定性。具体而言,我们通过预测方差对不确定性进行建模,并将不确定性涉及到优化目标。为了验证所提出的方法的有效性,我们在两个普遍的合成到现实的语义分割基准上评估了所提出的方法,即GTA5-> CityScapes和Synthia-> City -> CityScapes,以及一个跨城市基准以及一个CityScapes-> oxford Robotcar。我们通过广泛的实验证明,提出的方法(1)根据预测方差动态设置不同的置信度阈值,(2)纠正从嘈杂的伪标签中学习的学习,(3)对传统的伪标签学习和在所有三个基础标记上具有竞争性的竞争性能而实现显着改善。

This paper focuses on the unsupervised domain adaptation of transferring the knowledge from the source domain to the target domain in the context of semantic segmentation. Existing approaches usually regard the pseudo label as the ground truth to fully exploit the unlabeled target-domain data. Yet the pseudo labels of the target-domain data are usually predicted by the model trained on the source domain. Thus, the generated labels inevitably contain the incorrect prediction due to the discrepancy between the training domain and the test domain, which could be transferred to the final adapted model and largely compromises the training process. To overcome the problem, this paper proposes to explicitly estimate the prediction uncertainty during training to rectify the pseudo label learning for unsupervised semantic segmentation adaptation. Given the input image, the model outputs the semantic segmentation prediction as well as the uncertainty of the prediction. Specifically, we model the uncertainty via the prediction variance and involve the uncertainty into the optimization objective. To verify the effectiveness of the proposed method, we evaluate the proposed method on two prevalent synthetic-to-real semantic segmentation benchmarks, i.e., GTA5 -> Cityscapes and SYNTHIA -> Cityscapes, as well as one cross-city benchmark, i.e., Cityscapes -> Oxford RobotCar. We demonstrate through extensive experiments that the proposed approach (1) dynamically sets different confidence thresholds according to the prediction variance, (2) rectifies the learning from noisy pseudo labels, and (3) achieves significant improvements over the conventional pseudo label learning and yields competitive performance on all three benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源