论文标题

ESBM:实体摘要基准测试

ESBM: An Entity Summarization BenchMark

论文作者

Liu, Qingxia, Cheng, Gong, Gunaratna, Kalpa, Qu, Yuzhong

论文摘要

实体摘要是通过从RDF数据中选择一个大小约束的三元组来计算实体的最佳紧凑摘要的问题。实体摘要支持多种应用,并导致了富有成果的研究。但是,缺乏评估工作,涵盖了现有系统的广泛范围。原因之一是缺乏评估基准。有些基准不再可用,而另一些基准则很小并且有局限性。在本文中,我们创建了一个实体摘要基准(ESBM),该基准克服了现有基准的局限性,并符合基准标准的标准Desiderata。使用此最大的可用基准测试来评估通用实体摘要,我们进行了比较9〜现有系统的最广泛的实验。考虑到所有这些系统都是无监督的,我们还实施并评估了基于监督的学习系统以供参考。

Entity summarization is the problem of computing an optimal compact summary for an entity by selecting a size-constrained subset of triples from RDF data. Entity summarization supports a multiplicity of applications and has led to fruitful research. However, there is a lack of evaluation efforts that cover the broad spectrum of existing systems. One reason is a lack of benchmarks for evaluation. Some benchmarks are no longer available, while others are small and have limitations. In this paper, we create an Entity Summarization BenchMark (ESBM) which overcomes the limitations of existing benchmarks and meets standard desiderata for a benchmark. Using this largest available benchmark for evaluating general-purpose entity summarizers, we perform the most extensive experiment to date where 9~existing systems are compared. Considering that all of these systems are unsupervised, we also implement and evaluate a supervised learning based system for reference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源