论文标题

稀释轴恒星的量子隧穿速率接近最大质量

Quantum tunneling rate of dilute axion stars close to the maximum mass

论文作者

Chavanis, Pierre-Henri

论文摘要

我们计算稀轴恒星的量子隧穿速率接近最大质量[P.H. Chavanis,物理。修订版D {\ bf 84},043531(2011)]使用instantons理论。 We confirm that the lifetime of metastable states is extremely long, scaling as $t_{\rm life}\sim e^N\, t_D$ (except close to the critical point), where $N$ is the number of axions in the system and $t_D$ is the dynamical time ($N\sim 10^{57}$ and $t_D\sim 10\, {\rm hrs}$ for典型的QCD Axion Star; $ n \ sim 10^{96} $和$ t_d \ sim 100 \,{\ rm myrs} $用于由超光轴制成的暗物质的量子核心)。因此,在实践中,亚稳态平衡状态可以视为稳定的平衡状态。我们开发出接近最大质量的有限尺寸缩放理论,并预测,关键性量表的崩溃时间为$ t _ {\ rm coll} \ sim n^{1/5} t_d $,而不是无限制,因为当被忽视时。对于QCD轴恒星而言,塌陷时间小于QCD轴恒星的宇宙年龄,而对于由超轻轴制成的暗物质核心的倒塌时间大于宇宙的年龄。我们还考虑热隧道速率并得出相同的结论。我们将我们的结果与实验室中的Bose-Einstein冷凝物,天体物理学中的球状簇和早期宇宙中的量子场理论获得的结果进行了比较。

We compute the quantum tunneling rate of dilute axion stars close to the maximum mass [P.H. Chavanis, Phys. Rev. D {\bf 84}, 043531 (2011)] using the theory of instantons. We confirm that the lifetime of metastable states is extremely long, scaling as $t_{\rm life}\sim e^N\, t_D$ (except close to the critical point), where $N$ is the number of axions in the system and $t_D$ is the dynamical time ($N\sim 10^{57}$ and $t_D\sim 10\, {\rm hrs}$ for typical QCD axion stars; $N\sim 10^{96}$ and $t_D\sim 100\, {\rm Myrs}$ for the quantum core of a dark matter halo made of ultralight axions). Therefore, metastable equilibrium states can be considered as stable equilibrium states in practice. We develop a finite size scaling theory close to the maximum mass and predict that the collapse time at criticality scales as $t_{\rm coll}\sim N^{1/5}t_D$ instead of being infinite as when fluctuations are neglected. The collapse time is smaller than the age of the universe for QCD axion stars and larger than the age of the universe for dark matter cores made of ultralight axions. We also consider the thermal tunneling rate and reach the same conclusions. We compare our results with similar results obtained for Bose-Einstein condensates in laboratory, globular clusters in astrophysics, and quantum field theory in the early Universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源