论文标题

推断物体检测的空间不确定性

Inferring Spatial Uncertainty in Object Detection

论文作者

Wang, Zining, Feng, Di, Zhou, Yiyang, Rosenbaum, Lars, Timm, Fabian, Dietmayer, Klaus, Tomizuka, Masayoshi, Zhan, Wei

论文摘要

实际数据集的可用性是开发自动驾驶对象检测方法的先决条件。尽管由于容易出错的注释过程或传感器观察噪声而导致对象标签中存在歧义,但当前对象检测数据集仅提供确定性注释而无需考虑其不确定性。这排除了不同对象检测方法之间的深入评估,尤其是对于那些明确模拟预测概率的方法。在这项工作中,我们提出了一个生成模型,以估算LIDAR点云的边界框标签不确定性,并通过空间分布定义概率边界框的新表示形式。全面的实验表明,所提出的模型表示驾驶场景中常见的不确定性。基于空间分布,我们进一步提出了一个称为jaccard iou(jiou)的iou扩展,是一种新的评估指标,融合了标签不确定性。 Kitti和Waymo打开数据集的实验表明,在评估概率对象检测器时,Jiou优于IOU。

The availability of real-world datasets is the prerequisite for developing object detection methods for autonomous driving. While ambiguity exists in object labels due to error-prone annotation process or sensor observation noises, current object detection datasets only provide deterministic annotations without considering their uncertainty. This precludes an in-depth evaluation among different object detection methods, especially for those that explicitly model predictive probability. In this work, we propose a generative model to estimate bounding box label uncertainties from LiDAR point clouds, and define a new representation of the probabilistic bounding box through spatial distribution. Comprehensive experiments show that the proposed model represents uncertainties commonly seen in driving scenarios. Based on the spatial distribution, we further propose an extension of IoU, called the Jaccard IoU (JIoU), as a new evaluation metric that incorporates label uncertainty. Experiments on the KITTI and the Waymo Open Datasets show that JIoU is superior to IoU when evaluating probabilistic object detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源