论文标题
AL2:在分类神经网络中学习一般表示的渐进激活损失
AL2: Progressive Activation Loss for Learning General Representations in Classification Neural Networks
论文作者
论文摘要
神经网络的大容量使他们能够学习复杂的功能。为了避免过度拟合,网络需要大量的培训数据,这些数据可能昂贵且耗时。衰减过度拟合的常见实用方法是使用网络正则化技术。我们提出了一种新颖的正则化方法,该方法逐渐惩罚训练过程中的激活幅度。所有神经元在给定层中产生的组合激活信号形成了该特征空间中输入图像的表示。我们建议在分类层之前的最后一个特征层中规范此表示。通过标签随机测试和累积消融分析我们方法对概括的影响。实验结果表明,与标准基准数据集上常用的正规化器相比,我们的方法的优势。
The large capacity of neural networks enables them to learn complex functions. To avoid overfitting, networks however require a lot of training data that can be expensive and time-consuming to collect. A common practical approach to attenuate overfitting is the use of network regularization techniques. We propose a novel regularization method that progressively penalizes the magnitude of activations during training. The combined activation signals produced by all neurons in a given layer form the representation of the input image in that feature space. We propose to regularize this representation in the last feature layer before classification layers. Our method's effect on generalization is analyzed with label randomization tests and cumulative ablations. Experimental results show the advantages of our approach in comparison with commonly-used regularizers on standard benchmark datasets.