论文标题
Brouwer的Laplacian Spectrum猜想的限制
Constraints on Brouwer's Laplacian Spectrum Conjecture
论文作者
论文摘要
Brouwer的猜想指出,对于任何图$ g $,$ k $最大(组合)laplacian eigenvalues的总和最多是$ | e(g)| + \ binom {k+ 1} {2} $,$ 1 \ leq k \ leq n $。我们提出了几个相互关联的结果,以建立Brouwer的猜想$ \ text {bc} _k(g)$,用于广泛的图形$ g $和参数$ k $。特别是,我们表明(1)$ \ text {bc} _k(g)$对于低含量图是正确的,尤其是对于$ k \ geq 11 $时的平面$ g $; (2)$ \ text {bc} _k(g)$是正确的。 (3)$ \ text {bc} _k(g)$如果$ g $属于遗传性频谱的类,而$ k $作为$ k $的函数,尤其是$ k \ geq \ sqrt {32n} $ for Bipartite graphs for Bipartite图形; (4)$ \ text {bc} _k(g)$持有,除非$ g $具有edge-eDIT距离$ <k \ sqrt {2n} = o(n^{3/2})$从拆分图中; (5)否$ g $违反了超过$ o(n^{5/4})$的猜想上限,而双方$ g $不超过$ o(n)$; (6)$ \ text {bc} _k(g)$在一个间隔$ o(n^{3/4})$的间隔内包含所有$ k $。此外,我们给出一个令人惊讶的负面结果:渐近地肯定,均匀的随机签名完整图违反了$ω(n)$的猜想。
Brouwer's Conjecture states that, for any graph $G$, the sum of the $k$ largest (combinatorial) Laplacian eigenvalues of $G$ is at most $|E(G)| + \binom{k+1}{2}$, $1 \leq k \leq n$. We present several interrelated results establishing Brouwer's conjecture $\text{BC}_k(G)$ for a wide range of graphs $G$ and parameters $k$. In particular, we show that (1) $\text{BC}_k(G)$ is true for low-arboricity graphs, and in particular for planar $G$ when $k \geq 11$; (2) $\text{BC}_k(G)$ is true whenever the variance of the degree sequence is not very high, generalizing previous results for $G$ regular or random; (3) $\text{BC}_k(G)$ is true if $G$ belongs to a hereditarily spectrally-bounded class and $k$ is sufficiently large as a function of $k$, in particular $k \geq \sqrt{32n}$ for bipartite graphs; (4) $\text{BC}_k(G)$ holds unless $G$ has edge-edit distance $< k \sqrt{2n} = O(n^{3/2})$ from a split graph; (5) no $G$ violates the conjectured upper bound by more than $O(n^{5/4})$, and bipartite $G$ by no more than $O(n)$; and (6) $\text{BC}_k(G)$ holds for all $k$ outside an interval of length $O(n^{3/4})$. Furthermore, we present a surprising negative result: asymptotically almost surely, a uniform random signed complete graph violates the conjectured bound by $Ω(n)$.