论文标题
具有偏置自激发振荡的离散时间,耗时的LUR'E模型
A Discrete-Time, Time-Delayed Lur'e Model with Biased Self-Excited Oscillations
论文作者
论文摘要
自激发系统在许多应用中都出现,例如生化系统,具有流体结构相互作用的机械系统以及具有燃烧动力学的燃油驱动系统。本文提出了一个LUR'E模型,该模型在恒定输入下表现出偏见的自激发振荡。该模型涉及渐近稳定的线性动力学,时间延迟,洗涤过滤器和饱和度非线性。对于所有足够大的循环传递函数的尺度,这些组件在较小的信号水平下引起差异,并在较大的信号幅度下腐烂,从而产生振荡响应。使用偏置机制来指定振荡的平均值。本文的主要贡献是对该模型的离散时间版本的详细分析。
Self-excited systems arise in many applications, such as biochemical systems, mechanical systems with fluid-structure interaction, and fuel-driven systems with combustion dynamics. This paper presents a Lur'e model that exhibits biased self-excited oscillations under constant inputs. The model involves asymptotically stable linear dynamics, time delay, a washout filter, and a saturation nonlinearity. For all sufficiently large scalings of the loop transfer function, these components cause divergence under small signal levels and decay under large signal amplitudes, thus producing an oscillatory response. A bias-generation mechanism is used to specify the mean of the oscillation. The main contribution of the paper is a detailed analysis of a discrete-time version of this model.