论文标题
声学驱动钻石氮 - 视口中心的单量子自旋转变
Acoustically driving the single quantum spin transition of diamond nitrogen-vacancy centers
论文作者
论文摘要
使用高质量的因子3 GHz大量声波谐振器设备,我们演示了声学驱动的单量子自旋转变($ \ left | M_ {s} = 0 \右> \ right> \ leftrightArrow \ leftrightArrow \ left | \ pm1 \ pm1 \ pm1 \ pm1 \ right> $)diamond NV中心并表征相应的应力应力敏感性。一个关键的挑战是将设备电流产生的无意磁驱动场从设备内的故意驱动中产生。在研究更复杂的情况之前,我们使用狂犬病光谱独立量化了这些驱动场,其中两者都与单量子自旋跃迁共鸣。通过构建等效电路模型来描述设备的电流和机械动力学,我们对实验进行定量建模以建立其相对贡献并与我们的结果进行比较。我们发现,NV中心自旋单量子过渡的应力敏感性约为$ \ sqrt {2}(0.5 \ pm0.2)$ timers对于双重量子过渡($ \ left |+weft | +1 \ right> \ leftrightArrow \ leftrightArrow \ left | left | -1 \ right> $)。尽管以双重量子为基础的声学驾驶对于量子增强的传感应用是有价值的,但双重量子驱动缺乏操纵NV中心旋转$ \ left | M_ {s} = 0 \ right> $初始化状态的能力。我们的结果表明,有效地对NV中心进行了有效的全声学量子控制,并且对于传感应用程序的应用尤其有希望,这些应用受益于紧凑的足迹和声学设备的位置选择性。
Using a high quality factor 3 GHz bulk acoustic wave resonator device, we demonstrate the acoustically driven single quantum spin transition ($\left|m_{s}=0\right>\leftrightarrow\left|\pm1\right>$) for diamond NV centers and characterize the corresponding stress susceptibility. A key challenge is to disentangle the unintentional magnetic driving field generated by device current from the intentional stress driving within the device. We quantify these driving fields independently using Rabi spectroscopy before studying the more complicated case in which both are resonant with the single quantum spin transition. By building an equivalent circuit model to describe the device's current and mechanical dynamics, we quantitatively model the experiment to establish their relative contributions and compare with our results. We find that the stress susceptibility of the NV center spin single quantum transition is around $\sqrt{2}(0.5\pm0.2)$ times that for double quantum transition ($\left|+1\right>\leftrightarrow\left|-1\right>$). Although acoustic driving in the double quantum basis is valuable for quantum-enhanced sensing applications, double quantum driving lacks the ability to manipulate NV center spins out of the $\left|m_{s}=0\right>$ initialization state. Our results demonstrate that efficient all-acoustic quantum control over NV centers is possible, and is especially promising for sensing applications that benefit from the compact footprint and location selectivity of acoustic devices.