论文标题

将稳定解决方案分类为非本地Gelfand-Liouville方程式

Classification of stable solutions to a non-local Gelfand-Liouville equation

论文作者

Hyder, Ali, Yang, Wen

论文摘要

我们研究非本地Gelfand-Liouville问题的有限摩尔斯索引解决方案 $$(-Δ)^su = e^u \ quad \ mathrm {in} \ quad \ quad \ mathbb {r}^n,$ $ s \ in(0,1)$和$ n> 2s $。确切地说,每当单数解决方案$$ u_ {n,s}(x)= -2S \ log | x |+\ log时,我们证明有限摩尔斯索引解决方案不存在\ left(2^{2S} \ frac {γ(\ frac {n} {2})γ(1+s)}} {γ(\ frac {n-2s} {2} {2} {2} {2} {2}} \ right)$$不稳定。

We study finite Morse index solutions to the non-local Gelfand-Liouville problem $$ (-Δ)^su=e^u\quad\mathrm{in}\quad \mathbb{R}^n,$$ for every $s\in(0,1)$ and $n>2s$. Precisely, we prove non-existence of finite Morse index solutions whenever the singular solution $$u_{n,s}(x)=-2s\log|x|+\log \left(2^{2s}\frac{Γ(\frac{n}{2})Γ(1+s)}{Γ(\frac{n-2s}{2})}\right)$$ is unstable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源