论文标题
在深尖峰神经网络的空间时间学习中利用神经元和突触滤波器动力学
Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal Learning of Deep Spiking Neural Network
论文作者
论文摘要
最近发现的生物启发尖峰神经网络(SNN)的时空信息处理能力已实现了一些有趣的模型和应用。然而,由于缺乏强大的训练算法,设计大规模和高性能模型尚未挑战。具有时空特性的生物学成分SNN模型是一个复杂的动态系统。每个突触和神经元的表现都是能够保留时间信息的过滤器。由于现有的训练算法忽略了这种神经元动力学和滤波器效应,因此SNN降级到了无内存系统,并失去了时间信号处理的能力。此外,SPIKE定时在信息表示中起着重要的作用,但是基于速率的常规尖峰编码模型仅考虑统计上的尖峰列车,并丢弃其时间结构所携带的信息。为了解决上述问题,并利用SNN的时间动力学,我们将SNN作为无线脉冲响应(IIR)过滤器网络的形式,具有神经元非线性。我们提出了一种训练算法,该算法能够通过搜索最佳突触过滤器内核和重量来学习时空模式。提出的模型和培训算法应用于构建合成和公共数据集的关联记忆和分类器,包括MNIST,NMNIST,DVS 128等。他们的准确性优于最先进的方法。
The recent discovered spatial-temporal information processing capability of bio-inspired Spiking neural networks (SNN) has enabled some interesting models and applications. However designing large-scale and high-performance model is yet a challenge due to the lack of robust training algorithms. A bio-plausible SNN model with spatial-temporal property is a complex dynamic system. Each synapse and neuron behave as filters capable of preserving temporal information. As such neuron dynamics and filter effects are ignored in existing training algorithms, the SNN downgrades into a memoryless system and loses the ability of temporal signal processing. Furthermore, spike timing plays an important role in information representation, but conventional rate-based spike coding models only consider spike trains statistically, and discard information carried by its temporal structures. To address the above issues, and exploit the temporal dynamics of SNNs, we formulate SNN as a network of infinite impulse response (IIR) filters with neuron nonlinearity. We proposed a training algorithm that is capable to learn spatial-temporal patterns by searching for the optimal synapse filter kernels and weights. The proposed model and training algorithm are applied to construct associative memories and classifiers for synthetic and public datasets including MNIST, NMNIST, DVS 128 etc.; and their accuracy outperforms state-of-art approaches.