论文标题
Moire Systems中的拓扑超导性,铁磁性和山谷极化相:扭曲双重双层石墨烯的重新归一化组分析
Topological superconductivity, ferromagnetism, and valley-polarized phases in moire systems: Renormalization group analysis for twisted double bilayer graphene
论文作者
论文摘要
最近的实验观察到了扭曲的双双层石墨烯中可能的自旋和山谷偏置的绝缘子和自旋三层超导性,这是一种由一对Bernal堆叠的双层石墨烯组成的Moire结构。除了由施加的位移磁场和扭曲角控制的连续可调的带宽度外,这些摩尔带还具有费米表面附近的van hove奇异性,而依赖田间依赖的嵌套则远非完美。在这里,我们进行了扰动的重新归一化组分析,以公正地研究扭曲的双重双层石墨烯和相关系统中所有可能的不稳定性的竞争,并具有相似的范霍夫·费米诺学,在存在弱但有限的排斥相互作用的情况下。我们的主要发现是,在扭曲的双重双层石墨烯中相互作用引起的几种竞争磁性,山谷,电荷和超导不稳定性,可以通过控制位移场和扭转角来调节它们。特别是,我们表明,自旋或谷极化的统一不稳定性在小于带宽度的中等相互作用下占主导地位,而$ p $ - 波旋转的旋转三个旋转拓扑拓扑超导性和异国情调的旋转singlet调制配对状态变得很重要,因为相互作用降低。在具有类似的Van Hove Fermiology的通用Moire系统中实现我们的发现,应为在高度可调的平台中操纵拓扑超导性和旋转或山谷极化状态提供新的机会。
Recent experiments have observed possible spin- and valley-polarized insulators and spin-triplet superconductivity in twisted double bilayer graphene, a moire structure consisting of a pair of Bernal-stacked bilayer graphene. Besides the continuously tunable band widths controlled by an applied displacement field and twist angle, these moire bands also possess van Hove singularities near the Fermi surface and a field-dependent nesting which is far from perfect. Here we carry out a perturbative renormalization group analysis to unbiasedly study the competition among all possible instabilities in twisted double bilayer graphene and related systems with a similar van Hove fermiology in the presence of weak but finite repulsive interactions. Our key finding is that there are several competing magnetic, valley, charge, and superconducting instabilities arising from interactions in twisted double bilayer graphene, which can be tuned by controlling the displacement field and the twist angle. In particular, we show that spin- or valley-polarized uniform instabilities generically dominate under moderate interactions smaller than the band width, whereas $p$-wave spin-triplet topological superconductivity and exotic spin-singlet modulated paired state become important as the interactions decrease. Realization of our findings in general moire systems with a similar van Hove fermiology should open up new opportunities for manipulating topological superconductivity and spin- or valley-polarized states in highly tunable platforms.