论文标题
一种在一般符号图中计算周期轨道的新方法
A new method to compute periodic orbits in general symplectic maps
论文作者
论文摘要
对高阶周期轨道的搜索通常仅限于有助于降低搜索空间维度的对称性问题。众所周知的例子包括具有对称线的可逆地图。目前的工作提出了一种新的方法,可以在不使用对称性的情况下在扭曲图中计算高阶周期轨道。该方法是傅立叶空间中参数化方法的组合和牛顿 - 高斯多个射击方案的组合。过去已经成功使用了参数化方法来计算准周期不变圆。但是,这是第一次在周期性轨道的上下文中使用此方法。提供了数值示例,显示了所提出方法的准确性和效率。该方法还用于验证在相对未探索的没有对称性的地图的情况下,在关键性(以可逆地图中进行了广泛研究)在关键性(以可逆地图进行了广泛研究)的重新归一化预测。
The search of high-order periodic orbits has been typically restricted to problems with symmetries that help to reduce the dimension of the search space. Well-known examples include reversible maps with symmetry lines. The present work proposes a new method to compute high-order periodic orbits in twist maps without the use of symmetries. The method is a combination of the parameterization method in Fourier space and a Newton-Gauss multiple shooting scheme. The parameterization method has been successfully used in the past to compute quasi-periodic invariant circles. However, this is the first time that this method is used in the context of periodic orbits. Numerical examples are presented showing the accuracy and efficiency of the proposed method. The method is also applied to verify the renormalization prediction of the residues' convergence at criticality (extensively studied in reversible maps) in the relatively unexplored case of maps without symmetries.