论文标题
揭示隐藏在强大风中的星星的轨道动力:应用于$η$ carinae和rmc 140
Uncovering the orbital dynamics of stars hidden inside their powerful winds: application to $η$ Carinae and RMC 140
论文作者
论文摘要
用强风确定二元恒星的准确轨道具有挑战性。稠密的流出增加了有效的光球半径,从而排除了对开普勒运动的直接观察。相反,可观察到的是在恒星风中在大的半径上发出的宽线。我们的分析表明,从不同光谱线提取的径向速度之间存在强,系统的差异:线的发射区域越延长,与真实轨道运动的偏离越大。为了克服这些挑战,我们制定了一种新型的半分析模型,该模型封装了恒星的轨道运动和风的传播。该模型根据风的有限流速,编码过流动气体的综合速度场的集成速度场。我们在两个二元系统上测试了该模型。 (1)对于极端情况$η$ carinae,其中最突出的效果,我们能够将模型适合从H-Alpha到H-kappa的10条Balmer线,并同时与一组轨道参数:Periastron $ t_ {0}} = 2454848 $(jd),Eccentity $ ecentility $ e/km k = 69和Periastron $ω= 241^\ Circ $的经度。 (2)对于更典型的情况,即RMC 140中的Wolf射线星,我们证明,对于常用线,例如He II和N III/IV/V,我们期望Keplerian轨道与预测的径向速度之间的偏差。我们的研究表明,为了确定一组一致的轨道参数,与所使用的发射线无关,尤其是对于将来的高精度工作,因此必须进行纠正建模,例如此处介绍的矫正建模。
Determining accurate orbits of binary stars with powerful winds is challenging. The dense outflows increase the effective photospheric radius, precluding direct observation of the Keplerian motion; instead the observables are broad lines emitted over large radii in the stellar wind. Our analysis reveals strong, systematic discrepancies between the radial velocities extracted from different spectral lines: the more extended a line's emission region, the greater the departure from the true orbital motion. To overcome these challenges, we formulate a novel semi-analytical model which encapsulates both the star's orbital motion and the propagation of the wind. The model encodes the integrated velocity field of the out-flowing gas in terms of a convolution of past motion due to the finite flow speed of the wind. We test this model on two binary systems. (1), for the extreme case $η$ Carinae, in which the effects are most prominent, we are able to fit the model to 10 Balmer lines from H-alpha to H-kappa concurrently with a single set of orbital parameters: time of periastron $T_{0}=2454848$ (JD), eccentricity $e=0.91$, semi-amplitude $k=69$ km/s and longitude of periastron $ω=241^\circ$. (2) for a more typical case, the Wolf-Rayet star in RMC 140, we demonstrate that for commonly used lines, such as He II and N III/IV/V, we expect deviations between the Keplerian orbit and the predicted radial velocities. Our study indicates that corrective modelling, such as presented here, is necessary in order to identify a consistent set of orbital parameters, independent of the emission line used, especially for future high accuracy work.