论文标题

Coxeter组子单词复合物的几何实现的组合基础

Combinatorial foundations for geometric realizations of subword complexes of Coxeter groups

论文作者

Labbé, Jean-Philippe

论文摘要

多拟元素和更普遍的子字络合物产生了一大批对球体同构的简单络合物。到目前为止,所有试图证明或反驳他们可以将其实现为凸多属的企图面临主要障碍。在本文中,我们列出了一个框架的基础 - 基于代数组合和离散几何形状的概念,该框架可以更深入地了解Coxeter组的子单词复合物的几何实现。也就是说,我们明确地描述了一个封装必要信息以获得子词复合体的几何实现的chirotopes家族。此外,我们表明,该家族的几何实现空间涵盖了子词复合体的空间,使该组合定义的家族成为一个自然的研究对象。 chirotopes家族通过某些参数矩阵描述。也就是说,给定一个有限的高速公司组,我们提出了某些未成年人规定标志的矩阵。参数矩阵是通用的:这些矩阵的存在与Schur函数相结合的条件相当于该Coxeter组的所有子单词复合物作为chirotopes的实现性。最后,参数矩阵提供了组合身份的扩展。例如,通过合适的参数选择恢复了Vandermonde的决定因素和双曲调身份。

Multitriangulations, and more generally subword complexes, yield a large family of simplicial complexes that are homeomorphic to spheres. Until now, all attempts to prove or disprove that they can be realized as convex polytopes faced major obstacles. In this article, we lay out the foundations of a framework -- built upon notions from algebraic combinatorics and discrete geometry -- that allows a deeper understanding of geometric realizations of subword complexes of Coxeter groups. Namely, we describe explicitly a family of chirotopes that encapsulate the necessary information to obtain geometric realizations of subword complexes. Further, we show that the space of geometric realizations of this family covers that of subword complexes, making this combinatorially defined family into a natural object to study. The family of chirotopes is described through certain parameter matrices. That is, given a finite Coxeter group, we present matrices where certain minors have prescribed signs. Parameter matrices are universal: The existence of these matrices combined with conditions in terms of Schur functions is equivalent to the realizability of all subword complexes of this Coxeter group as chirotopes. Finally, parameter matrices provide extensions of combinatorial identities; for instance, the Vandermonde determinant and the dual Cauchy identity are recovered through suitable choices of parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源