论文标题

在\ mathbb {p}^2上排名两个向量捆绑包的Segre不变性

On the Segre Invariant for rank two vector bundles on \mathbb{P}^2

论文作者

Roa-Leguizamón, L., López, H. Torres, Zamora, A. G.

论文摘要

我们将Segre不变性的概念扩展到表面$ x $上的矢量捆绑包。对于$ x = \ mathbb {p}^2 $,我们确定哪些数字可以作为排名$ 2 $ vector Bundle的segre不变,并带有给定Chern的类别。证明了具有固定Segre不变性的地层的不可约性,并计算了其尺寸。最后,我们向Brill-Noether的理论提出了申请,排名$ 2 $ vector捆绑包$ \ Mathbb {p}^2。$

We extend the concept of Segre's Invariant to vector bundles on a surface $X$. For $X=\mathbb{P}^2$ we determine what numbers can appear as the Segre Invariant of a rank $2$ vector bundle with given Chern's classes. The irreducibility of strata with fixed Segre's invariant is proved and its dimensions are computed. Finally, we present applications to the Brill-Noether's Theory for rank $2$ vector bundles on $\mathbb{P}^2.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源