论文标题

混合建模:实时诊断中的应用

Hybrid modeling: Applications in real-time diagnosis

论文作者

Matei, Ion, de Kleer, Johan, Feldman, Alexander, Rai, Rahul, Chowdhury, Souma

论文摘要

精确抽象高保真模型和启用更快模拟的降低阶模型对于实时,基于模型的诊断应用至关重要。在本文中,我们概述了一种新型的混合建模方法,该方法结合了机器学习启发的模型和基于物理的模型,以从高保真度模型中生成还原级的模型。我们正在使用此类模型进行实时诊断应用。具体而言,我们已经开发了机器学习启发的表示形式,以生成减少的订单组件模型,该模型部分保留了原始高保真组件模型的物理解释。为了确保学习算法的准确性,可扩展性和数值稳定性在训练还原级模型时,我们使用具有自动差异的优化平台。培训数据是通过模拟高保真模型来生成的。我们在铁路开关系统的故障诊断背景下展示了我们的方法。在方程数和仿真时间中,三个新的模型抽象的复杂性比高保真模型的复杂性小两个数量级。数值实验和结果证明了所提出的杂交建模方法的功效。

Reduced-order models that accurately abstract high fidelity models and enable faster simulation is vital for real-time, model-based diagnosis applications. In this paper, we outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models to generate reduced-order models from high fidelity models. We are using such models for real-time diagnosis applications. Specifically, we have developed machine learning inspired representations to generate reduced order component models that preserve, in part, the physical interpretation of the original high fidelity component models. To ensure the accuracy, scalability and numerical stability of the learning algorithms when training the reduced-order models we use optimization platforms featuring automatic differentiation. Training data is generated by simulating the high-fidelity model. We showcase our approach in the context of fault diagnosis of a rail switch system. Three new model abstractions whose complexities are two orders of magnitude smaller than the complexity of the high fidelity model, both in the number of equations and simulation time are shown. The numerical experiments and results demonstrate the efficacy of the proposed hybrid modeling approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源