论文标题

动态近似最大独立的间隔,高管和超矩形

Dynamic Approximate Maximum Independent Set of Intervals, Hypercubes and Hyperrectangles

论文作者

Henzinger, Monika, Neumann, Stefan, Wiese, Andreas

论文摘要

独立集是组合优化的基本问题。虽然总体图中,问题本质上是不适应性的,但对于许多重要的图类类,在离线设置中有近似算法。这些图形类包括间隔图和几何相交图,其中顶点对应于间隔/几何对象,而边缘表示两个相应的对象相交。 我们为独立的间隔集,超振管和超矩形介绍$ d $尺寸的独立集合集。它们在完全动态的模型中起作用,其中每个更新插入或删除几何对象。假设所有输入对象的坐标均以$ [0,n]^d $为单位,我们所有的算法都是确定性的,并且具有常数$ d $和$ε> 0 $的最差更新时间,对于常数$ d $和$ε> 0 $,则具有polygrogarithmic。 $ \ bullet $用于加权间隔,我们维护$(1+ε)$ - 近似解决方案。 $ \ bullet $ for $ d $ - 维度超级立方体我们维护$(1+ε)2^{d} $ - 在未加权情况下的近似解决方案,在加权情况下,$ O(2^{d})$ - 近似解决方案。另外,我们表明,对于维护未加​​权的$(1+ε)$ - 近似解决方案,如果ETH保留,则需要$ d \ ge2 $的多项式更新时间。 $ \ bullet $用于加权$ d $ - 维超矩形,我们提出了一种动态算法,具有近似值$ $(1+ε)\ log^{d-1} n $。

Independent set is a fundamental problem in combinatorial optimization. While in general graphs the problem is essentially inapproximable, for many important graph classes there are approximation algorithms known in the offline setting. These graph classes include interval graphs and geometric intersection graphs, where vertices correspond to intervals/geometric objects and an edge indicates that the two corresponding objects intersect. We present dynamic approximation algorithms for independent set of intervals, hypercubes and hyperrectangles in $d$ dimensions. They work in the fully dynamic model where each update inserts or deletes a geometric object. All our algorithms are deterministic and have worst-case update times that are polylogarithmic for constant $d$ and $ε> 0$, assuming that the coordinates of all input objects are in $[0, N]^d$ and each of their edges has length at least 1. We obtain the following results: $\bullet$ For weighted intervals, we maintain a $(1+ε)$-approximate solution. $\bullet$ For $d$-dimensional hypercubes we maintain a $(1+ε)2^{d}$-approximate solution in the unweighted case and a $O(2^{d})$-approximate solution in the weighted case. Also, we show that for maintaining an unweighted $(1+ε)$-approximate solution one needs polynomial update time for $d\ge2$ if the ETH holds. $\bullet$ For weighted $d$-dimensional hyperrectangles we present a dynamic algorithm with approximation ratio $(1+ε)\log^{d-1}N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源