论文标题
部分域适应的平衡和不确定性的方法
A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation
论文作者
论文摘要
这项工作解决了无监督的域适应问题,尤其是在目标域中的类标签的情况下,仅仅是源域中的标签。这种部分转移设置是现实的,但具有挑战性,现有方法总是遭受两个关键问题,负转移和不确定性传播。在本文中,我们建立在域的对抗学习的基础上,并提出了一种新颖的域适应方法Ba $^3 $我们,分别称为平衡对抗性对准(BAA)和自适应不确定性抑制(AUS)。一方面,负转移导致目标样本分类为仅在源域中存在的类别。为了解决这个问题,BAA以相当简单的方式追求跨域的标签分布之间的平衡。具体而言,它随机利用一些源样本来增强域对齐过程中较小的目标域,以使不同域中的类是对称的。另一方面,源样本将不确定是否存在不正确的类别的预测分数相对较高,而且这种不确定性很容易在对齐过程中围绕其周围的未标记目标数据传播,从而严重恶化了适应性性能。因此,我们提出了强调不确定样品并利用自适应加权补体熵目标的AU,以鼓励不正确的类具有统一和低预测分数。多个基准测试的实验结果证明了我们的ba $^3 $ US超过部分域适应任务的最先进。代码可在\ url {https://github.com/tim-learn/ba3us}中找到。
This work addresses the unsupervised domain adaptation problem, especially in the case of class labels in the target domain being only a subset of those in the source domain. Such a partial transfer setting is realistic but challenging and existing methods always suffer from two key problems, negative transfer and uncertainty propagation. In this paper, we build on domain adversarial learning and propose a novel domain adaptation method BA$^3$US with two new techniques termed Balanced Adversarial Alignment (BAA) and Adaptive Uncertainty Suppression (AUS), respectively. On one hand, negative transfer results in misclassification of target samples to the classes only present in the source domain. To address this issue, BAA pursues the balance between label distributions across domains in a fairly simple manner. Specifically, it randomly leverages a few source samples to augment the smaller target domain during domain alignment so that classes in different domains are symmetric. On the other hand, a source sample would be denoted as uncertain if there is an incorrect class that has a relatively high prediction score, and such uncertainty easily propagates to unlabeled target data around it during alignment, which severely deteriorates adaptation performance. Thus we present AUS that emphasizes uncertain samples and exploits an adaptive weighted complement entropy objective to encourage incorrect classes to have uniform and low prediction scores. Experimental results on multiple benchmarks demonstrate our BA$^3$US surpasses state-of-the-arts for partial domain adaptation tasks. Code is available at \url{https://github.com/tim-learn/BA3US}.