论文标题
calkin运算符上的对称功能的PIETSCH对应关系,与半蛋白石von Neumann代数相关
Pietsch correspondence for symmetric functionals on Calkin operator spaces associated with semifinite von Neumann algebras
论文作者
论文摘要
在本文中,我们将紧凑型运算符和痕迹理想的Pietsch对应关系扩展到半决赛设置。我们证明,由$ \ z $索引的序列的移位 - 单声道空间$ e(\ z)$定义了$τ$的calkin space $ e(\ cm,τ)$ - 可容纳的运算符,隶属于属于von neumann algebra $ \ cm \ cm \ cm \ cm \ cm \ cm \ cm \ cm \ cm fluths fauith forage fluith此外,我们表明$ e(\ z)$上的Shift-Invariant函数在$ e(\ cm,τ)$上生成对称函数。在特殊情况下,当代数$ \ cm $是原子或原子相等的原子时,相反的也会成立,我们在所有移位 - 马诺酮空间$ e(\ z)$ e(\ z)$和calkin spaces $ e(\ cm,τ)$和sermentive n of thehiant-Invariant $ e(e zextive z)$ z的$ e(\ cm cm e(\ z)$ e(\ z)$ e(\ z)$(\ z)$ e(\ z)$ e(\ z)$ e(&e z)之间的caliptials $ e(e(calkin $ e(\ cm,τ)$。 Bijective对应关系$ e(\ Z)\ leftrightArrows E(\ cm,τ)$扩展到完全对称$δ$ normed spaces $ e(\ cm,τ)$和完整$Δ$Δ$ normed shift-normed shift-shift-shift-monotone Space $ e(\ z)$之间的对应关系。
In this paper we extend the Pietsch correspondence for ideals of compact operators and traces on them to the semifinite setting. We prove that a shift-monotone space $E(\Z)$ of sequences indexed by $\Z$ defines a Calkin space $E(\cM,τ)$ of $τ$-measurable operators affiliated with a semifinite von Neumann algebra $\cM$ equipped with a faithful normal semifinite trace $τ$. Furthermore, we show that shift-invariant functionals on $E(\Z)$ generate symmetric functionals on $E(\cM,τ)$. In the special case, when the algebra $\cM$ is atomless or atomic with atoms of equal trace, the converse also holds and we have a bijective correspondence between all shift-monotone spaces $E(\Z)$ and Calkin spaces $E(\cM,τ)$ as well as a bijective correspondence between shift-invariant functionals on $E(\Z)$ and symmetric functionals on $E(\cM,τ)$. The bijective correspondence $E(\Z)\leftrightarrows E(\cM,τ)$ extends to a correspondence between complete symmetrically $Δ$-normed spaces $E(\cM,τ)$ and complete $Δ$-normed shift-monotone spaces $E(\Z)$.