论文标题

有向反馈顶点集的参数化算法

Parameterized Algorithms for Generalizations of Directed Feedback Vertex Set

论文作者

Göke, Alexander, Marx, Dániel, Mnich, Matthias

论文摘要

定向反馈顶点集(DFVS)问题将有向图〜$ g $作为输入,并寻求最小的顶点集〜$ s $,它以$ g $命中所有周期。这是KARP的21美元$ \ Mathsf {NP} $ - 完整问题。在Chen等人之前,解决DFV的参数化复杂性状态是一个长期的开放问题。 [STOC 2008,J。ACM2008]通过$ 4^kk展示了其固定参数的障碍! n^{\ Mathcal {o}(1)} $ - 时间算法,其中$ k = | s | $。 在这里,我们显示了两个DFV概括的固定参数障碍性: - 找到一个最小的顶点套$ s $,以使$ g -s $的每个强组件最多都有〜$ s $:我们给出了一个算法解决此问题$ 4^k(ks+k+s)!这将Xiao [JCSS 2017]的算法概括为问题的无向版本。 - 找到最小的顶点集$ s $,以便每个非平凡的强组件的$ g-s $ is 1算出:我们给出了一个算法解决此问题的算法$ 2^{\ MATHCAL {o}(k^3)} \ cdot n^{\ cdot n^{\ nathcal {\ nathcal {o}(o} $}(1)$。 我们还通过固定参数算法解决了这些问题的相应弧版。

The Directed Feedback Vertex Set (DFVS) problem takes as input a directed graph~$G$ and seeks a smallest vertex set~$S$ that hits all cycles in $G$. This is one of Karp's 21 $\mathsf{NP}$-complete problems. Resolving the parameterized complexity status of DFVS was a long-standing open problem until Chen et al. [STOC 2008, J. ACM 2008] showed its fixed-parameter tractability via a $4^kk! n^{\mathcal{O}(1)}$-time algorithm, where $k = |S|$. Here we show fixed-parameter tractability of two generalizations of DFVS: - Find a smallest vertex set $S$ such that every strong component of $G - S$ has size at most~$s$: we give an algorithm solving this problem in time $4^k(ks+k+s)!\cdot n^{\mathcal{O}(1)}$. This generalizes an algorithm by Xiao [JCSS 2017] for the undirected version of the problem. - Find a smallest vertex set $S$ such that every non-trivial strong component of $G - S$ is 1-out-regular: we give an algorithm solving this problem in time $2^{\mathcal{O}(k^3)}\cdot n^{\mathcal{O}(1)}$. We also solve the corresponding arc versions of these problems by fixed-parameter algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源