论文标题
使用测量,MD模拟和模型阐明$^1 $ H NMR松弛机制和多分散聚合物和沥青
Elucidating the $^1$H NMR relaxation mechanism in polydisperse polymers and bitumen using measurements, MD simulations, and models
论文作者
论文摘要
$^1 $ H NMR频率依赖性的机制和$ T_2 $的粘度依赖性对于Polydisperse聚合物和沥青仍然难以捉摸。我们通过NMR放松度量测量多分散聚合物在延长的频率($ f_0 = 0.01 = 0.01 \ leftrightArow $ 400 MHz)和粘度($η= 385 \ leftrightArrow 102,000 $ CP)上使用$ T_旋转框架中的野外循环松弛计和$ t_ {1ρ} $。我们解释了对数公平放松时间的异常行为$ t_ {1lm} \ propto f_0 $和$ t_ {2lm} \ propto(η/t)分支。我们表明,该模型还解释了先前报道的沥青测量值的异常$ t_ {1lm} $和$ t_ {2lm} $。我们发现,$ t_ {1} \ propto f_0 $分散和$ t_2 $的分子动力学(MD)模拟在一系列粘膜范围内模拟的类似聚合物($η= 1 \ leftrightArrow 1,000 $ cp)与测量和模型达成了良好的协议。 $ t_ {1} \ propto f_0 $在高粘度下的分散剂与以前报道的聚合物基质中限制的heptane的MD模拟,这表明粘性多生殖器流体和流体之间的常见NMR放松机制在约束下无需调用paramagnetism。
The mechanism behind the $^1$H NMR frequency dependence of $T_1$ and the viscosity dependence of $T_2$ for polydisperse polymers and bitumen remains elusive. We elucidate the matter through NMR relaxation measurements of polydisperse polymers over an extended range of frequencies ($f_0 = 0.01 \leftrightarrow$ 400 MHz) and viscosities ($η= 385 \leftrightarrow 102,000$ cP) using $T_{1}$ and $T_2$ in static fields, $T_{1}$ field-cycling relaxometry, and $T_{1ρ}$ in the rotating frame. We account for the anomalous behavior of the log-mean relaxation times $T_{1LM} \propto f_0$ and $T_{2LM} \propto (η/T)^{-1/2}$ with a phenomenological model of $^1$H-$^1$H dipole-dipole relaxation which includes a distribution in molecular correlation times and internal motions of the non-rigid polymer branches. We show that the model also accounts for the anomalous $T_{1LM}$ and $T_{2LM}$ in previously reported bitumen measurements. We find that molecular dynamics (MD) simulations of the $T_{1} \propto f_0$ dispersion and $T_2$ of similar polymers simulated over a range of viscosities ($η= 1 \leftrightarrow 1,000$ cP) are in good agreement with measurements and the model. The $T_{1} \propto f_0$ dispersion at high viscosities agrees with previously reported MD simulations of heptane confined in a polymer matrix, which suggests a common NMR relaxation mechanism between viscous polydisperse fluids and fluids under confinement, without the need to invoke paramagnetism.