论文标题

表面波加速的多通道分析(Maswaccelerated):使用MPI和GPU的有效表面波反转的软件

Multichannel Analysis of Surface Waves Accelerated (MASWAccelerated): Software for Efficient Surface Wave Inversion Using MPI and GPUs

论文作者

Kump, Joseph, Martin, Eileen R.

论文摘要

表面波的多通道分析(MASW)是一种在岩土工程和工程地球物理学中经常使用的技术,用于推断顶部数十米的地震剪切波速度的分层模型至数百米的地下。我们的目标是通过在大多数工程师的工作站中利用现代计算机硬件来加速MASW计算:多个核心和图形处理单元(GPU)。我们提出了新的并行和GPU加速算法,用于评估MASW数据,并使用消息传递接口(MPI)和CUDA在C中提供软件实现。这些算法利用了问题中产生的稀疏性,而过程之间的工作平衡考虑了典型的数据趋势。我们将方法与现有的开源MATLAB MASW工具进行比较。我们的串行C实现在MATLAB软件上实现了2倍的速度,我们通过与MPI的问题同行,继续看到改进。我们看到统一数据几乎完美的强度缩放和弱缩放,并通过将问题重新分配到处理映射来改善逼真的数据。通过利用大多数现代工作站上可用的GPU,我们在首次使用该方法时观察到串行C实现的1.3倍加速。作为优化过程的一部分,我们通常会反复评估理论分散曲线,并且在GPU上,可以缓存内核,以便更快地进行重复使用。与串行C运行相比,我们在缓存的GPU运行中观察到3.2倍的加速。这项工作是用于MASW成像的第一个开源平行或GPU加速软件工具,并且应该使岩土工程师能够充分利用所有计算机硬件。

Multichannel Analysis of Surface Waves (MASW) is a technique frequently used in geotechnical engineering and engineering geophysics to infer layered models of seismic shear wave velocities in the top tens to hundreds of meters of the subsurface. We aim to accelerate MASW calculations by capitalizing on modern computer hardware available in the workstations of most engineers: multiple cores and graphics processing units (GPUs). We propose new parallel and GPU accelerated algorithms for evaluating MASW data, and provide software implementations in C using Message Passing Interface (MPI) and CUDA. These algorithms take advantage of sparsity that arises in the problem, and the work balance between processes considers typical data trends. We compare our methods to an existing open source Matlab MASW tool. Our serial C implementation achieves a 2x speedup over the Matlab software, and we continue to see improvements by parallelizing the problem with MPI. We see nearly perfect strong and weak scaling for uniform data, and improve strong scaling for realistic data by repartitioning the problem to process mapping. By utilizing GPUs available on most modern workstations, we observe an additional 1.3x speedup over the serial C implementation on the first use of the method. We typically repeatedly evaluate theoretical dispersion curves as part of an optimization procedure, and on the GPU the kernel can be cached for faster reuse on later runs. We observe a 3.2x speedup on the cached GPU runs compared to the serial C runs. This work is the first open-source parallel or GPU-accelerated software tool for MASW imaging, and should enable geotechnical engineers to fully utilize all computer hardware at their disposal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源