论文标题
在球体上的定量有理近似
Quantitative rational approximation on spheres
论文作者
论文摘要
我们证明了通过球体上有理点的二磷酸近似定理定理。我们的结果对于任意的单型晶格有效,我们进一步证明了近似值的“螺旋”结果。这些结果是Kleinbock和Merrill证明的Khintchine型球体定理的定量概括。
We prove a quantitative theorem for Diophantine approximation by rational points on spheres. Our results are valid for arbitrary unimodular lattices and we further prove 'spiraling' results for the direction of approximates. These results are quantitative generalizations of the Khintchine-type theorem on spheres proved by Kleinbock and Merrill.